Formal languages, grammars, and automata

Herman Geuvers

(All info on

Overview

Topics

Languages: regular context-free [natural languages] [enumerable]

Automata: finite push-down [bounded Turing machine] [Turing machine]

Grammars: regular context-free [context-sensitive] [NL grammars?

Automata: accept words of a language

given a word, compute if it is in the language

Grammars: generate words of a language

produce all correct words in the language

Languages

Alphabet

An alphabet Σ is a (finite) set of symbols

Examples

```
\Sigma_1 = \{a\}
\Sigma_2 = \{0,1\}
\Sigma_3 = \{A, C, G, T\}
\Sigma_4 = \{a, b, c, d, \dots, x, y, z\}
\Sigma_5 = \{s \mid s \text{ is an ascii symbol}\}
\Sigma_6 = \{\}
            Japanese alphabet: 2 \times 52 signs
\Sigma_7 = \{,\ldots\}
            Chinese alphabet: \pm 40.000 signs
\Sigma_8 = \{0, 1, +, \times, x_0, x_1, x_2, \ldots\}
            mathematical alphabet, number of signs: countably infinite
\Sigma_9 = \{0, 1, +, \times, x_0, x_1, x_2, \ldots\} \cup \{c_r \mid r \in \mathbb{R}\}
            mathematical alphabet, number of signs uncountably infinite
```

Words

A word (string) over Σ is a finite sequence of elements from Σ The set Σ^* consists of all words over Σ

Inductive generation of words

$$\lambda \in \Sigma^*, \qquad \lambda \text{ denotes the empty word}$$

$$w \in \Sigma^* \ \Rightarrow \ ws \in \Sigma^*, \qquad \text{for all } s \in \Sigma$$

Note that λw is just w

Note the difference between $a \in \Sigma$ and $a \in \Sigma^*$

Think of a word as a chain of letters on a necklace:

$$\lambda = - Eva = -E-v-a-$$

The difference between a and -a— is clear

Operation on words; Language

Operations on words

$$u \in \Sigma^*, \ v \in \Sigma^* \Rightarrow u \cdot v \in \Sigma^*$$
 concatenation $u \in \Sigma^*, \ n \in \mathbb{N} \Rightarrow u^n \in \Sigma^*$ repeating words

Inductive definitions

$$\begin{bmatrix} u \cdot \lambda & = & u \\ u \cdot (vs) & = & (u \cdot v)s \end{bmatrix} \quad \begin{bmatrix} u^0 & = & \lambda \\ u^{k+1} & = & u^k \cdot u \end{bmatrix}$$

usually we write concatenation $u \cdot v$ as uv

A language over Σ is a subset of Σ^* , notation $L \subseteq \Sigma^*$

Examples

$$L_1 = \{w \in \{a, b\}^* \mid abba \text{ is a substring of } w\}$$

 $L_2 = \{w \in \{a, b\}^* \mid abba \text{ is not a substring of } w\}$

Examples of languages

Let
$$\Sigma = \{a, b, c\}$$
.

- 1. $L_1 = \{a^n \mid n \in \mathbb{N} \text{ is even}\}$
- 2. $L_2 = \{a^n b^n \mid n \in \mathbb{N}\}$
- 3. $L_3 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$
- 4. $L_4 = \{a^n \mid n \in \mathbb{N} \text{ is prime}\}$
- 5. $L_5 = \{n \mid n \text{ denotes an integer number}\}$
- 6. $L_6 = \{e \mid e \text{ is a well-formed arithmetical expression}\}$
- 7. $L_7 = \{P \mid P \text{ is a syntactically correct Java program}\}$
- 8. $L_8 = \{S \mid S \text{ is a grammatically correct English sentence}\}$

Operations on languages

Given languages $L_1, L_2, L \subseteq \Sigma^*$ we can define

$$L_1 \cup L_2$$
$$L_1 L_2$$
$$L^*$$

again languages over Σ

$$L_{1} \cup L_{2} = \{ w \mid w \in L_{1} \text{ or } w \in L_{2} \}$$

$$L_{1}L_{2} = \{ w_{1}w_{2} \mid w_{1} \in L_{1} \& w_{2} \in L_{2} \}$$

$$L^{0} = \{ \lambda \}$$

$$L^{n+1} = L^{n}L$$

$$L^{*} = \bigcup_{n \in \mathbb{N}} L^{n} = L^{0} \cup L^{1} \cup L^{2} \cup \dots$$

$$\neq \{ w^{n} \mid w \in L, n \in \mathbb{N} \}$$

Regular expressions & languages over Σ

Let $\Sigma = \{a, b\}$. Then $a(ba)^*bb$ is a *regular expression* denoting

$$L = \{a(ba)^n bb \mid n \in \mathbb{N}\}$$

= \{abb, ababb, abababb, abababb, abababb, \ldots, a(ba)^n bb, \ldots\}

For general Σ the regular expressions over Σ are generated by

$$\mathtt{rexp}_{\Sigma} ::= \emptyset \mid \lambda \mid \mathtt{s} \mid \mathtt{rexp}_{\Sigma} \ \mathtt{rexp}_{\Sigma} \mid \mathtt{rexp}_{\Sigma} \cup \mathtt{rexp}_{\Sigma} \mid \mathtt{rexp}_{\Sigma}^*$$

with $s \in \Sigma$

This means $\emptyset \in \text{rexp}_{\Sigma}$, $\lambda \in \text{rexp}_{\Sigma}$, and $s \in \text{rexp}_{\Sigma}$ for $s \in \Sigma$ and

$$egin{array}{ll} e_1, e_2 \in \mathtt{rexp}_\Sigma & \Rightarrow & (e_1 \cup e_2) \in \mathtt{rexp}_\Sigma \ e_1, e_2 \in \mathtt{rexp}_\Sigma & \Rightarrow & (e_1 e_2) \in \mathtt{rexp}_\Sigma \ e \in \mathtt{rexp}_\Sigma & \Rightarrow & (e^*) \in \mathtt{rexp}_\Sigma \end{array}$$

For example $(abb)^*(a \cup \lambda)$ is a regular expression

Regular languages

For a regular expression e over Σ we define the language L(e):

$$L(\emptyset) = \emptyset$$

$$L(\lambda) = \{\lambda\}$$

$$L(s) = \{s\}$$

$$L(e_1e_2) = L(e_1)L(e_2)$$

$$L(e_1 \cup e_2) = L(e_1) \cup L(e_2)$$

$$L(e^*) = L(e)^*$$

A language L is called *regular* if L = L(e) for some $e \in \text{rexp}$

Examples

 $L = \{w \mid bb \text{ occurs in } w\} \text{ over } \Sigma = \{a,b\} \text{ is regular:}$

$$L = L((a \cup b)^*bb(a \cup b)^*)$$

Also $L' = \Sigma^* - L = \{w \mid bb \text{ does not occur in } w\}$:

$$L' = L(a^*(baa^*)^* \cup a^*(baa^*)^*b)$$

To come

Regular Languages	Context-free Languages	Context-sensitive Languages	Enumerable Languages
Finite	Push-down	Bounded Turing	Turing
Automata	Automata	Machines	Machines
Regular	Context-free	Context-sensitive	General
Grammars	Grammars	Grammars	Grammars

Topics described in the last two columns are treated in other course