Finite Automata

The elements of Σ are the "moves" in the graph
A word in Σ^{*} is a sequence of moves
Start state is indicated by ' $>$ '; accepting state by double circle There can be several accepting states

The word $a b b a$ is accepted, but $b a a b$ is not accepted (rejected)
$M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$ with
$Q=\left\{q_{0}, q_{1}, q_{2}\right\}, \Sigma=\{a, b\}, F=\left\{q_{2}\right\}$ and δ given by

δ	q_{0}	q_{1}	\boldsymbol{q}_{2}
a	q_{0}	q_{0}	\boldsymbol{q}_{2}
b	q_{1}	\boldsymbol{q}_{2}	\boldsymbol{q}_{2}

M is a DFA over Σ if $M=\left(Q, \Sigma, q_{0}, \delta, F\right)$ with
$Q \quad$ is a finite set of states
$\Sigma \quad$ is a finite alphabet
$q_{0} \in Q \quad$ is the initial state
$F \subseteq Q \quad$ is a finite set of final states
$\delta: Q \times \Sigma \rightarrow Q \quad$ is the transition function
Reading function $\hat{\delta}: Q \times \Sigma^{*} \rightarrow Q$ (multi-step transition)

$$
\begin{aligned}
\hat{\delta}(q, \lambda) & =q \\
{[\hat{\delta}(q, a)} & =\delta(q, a)] \\
\hat{\delta}(q, w a) & =\delta(\hat{\delta}(q, w), a)
\end{aligned}
$$

The language accepted by M, notation $L(M)$, is:

$$
L(M)=\left\{w \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, w\right) \in F\right\}
$$

HG Formal languages, grammars, and automata \quad Week 2, Spring 2013

Computation for $\hat{\delta}(q, w)$ in the example $w=a b b a$:
$[q, a b b a] \vdash[\delta(q, a), b b a] \quad \hat{\delta}(q, a)=\delta(q, a)$
$\vdash \quad[\delta(\delta(q, a), b), b a]$
$\hat{\delta}(q, a b)=\delta(\delta(q, a), b)$
$\vdash \quad[\delta(\delta(\delta(q, a), b), b), a]$
$\hat{\delta}(q, a b b)=\delta(\delta(\delta(q, a), b), b)$
$\vdash \quad[\delta(\delta(\delta(\delta(q, a), b), b), a), \lambda] \quad \hat{\delta}(q, a b b a)=\delta(\delta(\delta(\delta(q, a), b), b), a)$

This computation corresponds to an equivalent definition of $\hat{\delta}$:

$$
\begin{aligned}
\hat{\delta}(q, \lambda) & =q \\
\hat{\delta}(q, a) & =\delta(q, a) \\
\hat{\delta}(q, a w) & =\hat{\delta}(\delta(q, a), w)
\end{aligned}
$$

Example transition table for δ with $Q=\{0,1,2,3,4\}, \Sigma=\{a, b\}, q_{0}=0$, and $F=\{4\}$

δ	a	b
0	1	0
1	1	2
2	1	3
3	4	0
4	4	4

We have $\hat{\delta}(0, a b b a)=4 \in F$ and $[0, a b b a] \vdash^{*}[4, \lambda]$, hence $a b b a \in L(M)$
Similarly $\hat{\delta}(0, b a b a)=1 \notin F$; so even if $[0, b a b a] \vdash^{*}[1, \lambda]$ we have $b a b a \notin L(M)$.
Even if $\hat{\delta}(1, b b a)=4 \in F$ and $[1, b b a] \vdash^{*}[4, \lambda]$ we have $b b a \notin L(M)$.

Given two DFAs over the same Σ

$$
\begin{aligned}
& M_{1}=\left\langle Q_{1}, \Sigma, \delta_{1}, q_{01}, F_{1}\right\rangle \\
& M_{2}=\left\langle Q_{2}, \Sigma, \delta_{2}, q_{02}, F_{2}\right\rangle
\end{aligned}
$$

Define

$$
M_{1} \times M_{2}=\left\langle Q_{1} \times Q_{2}, \Sigma, \delta, q_{0}, F\right\rangle
$$

with

$$
\begin{aligned}
q_{0} & :=\left\langle q_{01}, q_{02}\right\rangle \\
\delta\left(\left\langle q_{1}, q_{2}\right\rangle, a\right) & :=\left\langle\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right\rangle
\end{aligned}
$$

Then with

$$
F:=F_{1} \times F_{2}:=\left\{\left\langle q_{1}, q_{2}\right\rangle \mid q_{1} \in F_{1} \text { and } q_{2} \in F_{2}\right\}
$$

we have

$$
L\left(M_{1} \times M_{2}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)
$$

$\overline{\text { HG Formal languages, grammars, and automata } \quad \text { Week 2, Spring 2013 }}$

Proposition Closure under complement
If L is accepted by some DFA, then so is $\bar{L}=\Sigma^{*}-L$.
Proof. Suppose that L is accepted by $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$.
Then \bar{L} is accepted by $M=\left\langle Q, \Sigma, \delta, q_{0}, \bar{F}\right\rangle$.

Proposition Closure under intersection and union
If L_{1}, and L_{2} are accepted by some DFA, then so are $L_{1} \cap L_{2}$ and $L_{1} \cup L_{2}$.
Proof. For the intersection, this follows from the product construction on the previous slide.
For the union, this can be seen by the product construction, taking a different F (which one?) or by noticing that $L_{1} \cup L_{2}=\overline{\overline{L_{1}} \cap \overline{L_{2}}}$.

| HG Formal languages, grammars, and automata | Week 2, Spring 2013 |
| :--- | :--- | :--- |

Theorem The languages accepted by DFAs are exactly the regular languages
We will prove this in this and teh next lecture by

1. If $L=L(M)$, for some DFA M, then there is a regular expression e such that $L=L(e)$ (this lecture)
2. If $L=L(e)$, for some regular expression e, then there is a nondeterministic finite automaton (NFA) M such that $L=L(M)$. (next lecture)
3. For every NFA M, there is a DFA M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$ (next lecture)

Given the DFA $M=\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$, we construct for every $q_{i} \in Q$ a regular expression r_{i} such that r_{i} describes the "language accepted from state $q_{i}{ }^{\prime \prime}$:

$$
L\left(r_{i}\right)=\left\{w \in \Sigma^{*} \mid \hat{\delta}\left(q_{i}, w\right) \in F\right\}
$$

Let $\Sigma=\{a, b\}, Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$. Write, for $i \in\{0,1,2,3\}$

$$
\begin{aligned}
r_{i}= & a r_{j} \cup b r_{k}(\cup \lambda) \quad \text { with } \cup \lambda \text { only if } q_{i} \in F \\
& \text { if } \delta\left(q_{i}, a\right)=q_{j}, \delta\left(q_{j}, b\right)=q_{k}
\end{aligned}
$$

This gives a set of equations, which can be solved by starting from the last as follows:

- write the last equation as $r_{i}=w r_{i}+v$
- substitute in all other equations $r_{i}:=w^{*} v$
- remove the last equation

HG Formal languages, grammars, and automata Week 2, Spring 2013

This ends with a regulare expression $r_{0}:=e$.
Proposition $L(M)=L(e)$

