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Deterministic Finite State Automaton (DFA) (intuition) 1
—————————————————————————————

The elements of Σ are the “moves” in the graph
A word in Σ∗ is a sequence of moves
Start state is indicated by ‘>’; accepting state by double circle
There can be several accepting states

The word abba is accepted, but baab is not accepted (rejected)

M = 〈Q,Σ, δ, q0, F 〉 with

Q = {q0, q1, q2}, Σ = {a, b}, F = {q2} and δ given by

δ q0 q1 q2

a q0 q0 q2

b q1 q2 q2
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Deterministic Finite Automata: DFA (formally) 2
—————————————————————————————

M is a DFA over Σ if M = (Q,Σ, q0, δ, F ) with

Q is a finite set of states
Σ is a finite alphabet
q0 ∈ Q is the initial state
F ⊆ Q is a finite set of final states
δ : Q× Σ→Q is the transition function

Reading function δ̂ : Q× Σ∗→Q (multi-step transition)

δ̂(q, λ) = q

[δ̂(q, a) = δ(q, a)]

δ̂(q, wa) = δ(δ̂(q, w), a)

The language accepted by M , notation L(M), is:

L(M) = {w ∈ Σ∗ | δ̂(q0, w) ∈ F}
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Reading words w ∈ Σ∗ 3
—————————————————————————————
Computation for δ̂(q, w) in the example w = abba:

[q, abba] ⊢ [δ(q, a), bba] δ̂(q, a) = δ(q, a)

⊢ [δ(δ(q, a), b), ba] δ̂(q, ab) = δ(δ(q, a), b)

⊢ [δ(δ(δ(q, a), b), b), a] δ̂(q, abb) = δ(δ(δ(q, a), b), b)

⊢ [δ(δ(δ(δ(q, a), b), b), a), λ] δ̂(q, abba) = δ(δ(δ(δ(q, a), b), b), a)

This computation corresponds to an equivalent definition of δ̂:

δ̂(q, λ) = q

δ̂(q, a) = δ(q, a)

δ̂(q, aw) = δ̂(δ(q, a), w)

Example transition table for δ with Q = {0, 1, 2, 3, 4}, Σ = {a, b}, q0 = 0, and F = {4}

δ a b

0 1 0
1 1 2
2 1 3
3 4 0
4 4 4

We have δ̂(0, abba) = 4 ∈ F and [0, abba] ⊢∗ [4, λ], hence abba ∈ L(M)

Similarly δ̂(0, baba) = 1 /∈ F ; so even if [0, baba] ⊢∗ [1, λ] we have baba /∈ L(M).

Even if δ̂(1, bba) = 4 ∈ F and [1, bba] ⊢∗ [4, λ] we have bba /∈ L(M).
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Manipulating Finite Automata: products for intersection 4
—————————————————————————————

M L(M)

L1 = {w | #a(w) is even}

L2 = {w | #b(w) ≥ 1}

L1 ∩ L2 =

{s | #a(w) is even and #b(w) ≥ 1}
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Product of two DFAs 5
—————————————————————————————

Given two DFAs over the same Σ

M1 = 〈Q1,Σ, δ1, q01, F1〉

M2 = 〈Q2,Σ, δ2, q02, F2〉

Define
M1 ×M2 = 〈Q1 ×Q2,Σ, δ, q0, F 〉

with

q0 := 〈q01, q02〉

δ(〈q1, q2〉, a) := 〈δ1(q1, a), δ2(q2, a)〉

Then with

F := F1 × F2 := {〈q1, q2〉 | q1 ∈ F1 and q2 ∈ F2}

we have
L(M1 ×M2) = L(M1) ∩ L(M2)
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Closure Properties 6
—————————————————————————————

Proposition Closure under complement

If L is accepted by some DFA, then so is L = Σ∗ − L.

Proof. Suppose that L is accepted by M = 〈Q,Σ, δ, q0, F 〉.

Then L is accepted by M = 〈Q,Σ, δ, q0, F 〉. �

Proposition Closure under intersection and union

If L1, and L2 are accepted by some DFA, then so are L1 ∩ L2 and
L1 ∪ L2.

Proof. For the intersection, this follows from the product construction
on the previous slide.

For the union, this can be seen by the product construction, taking a

different F (which one?) or by noticing that L1 ∪ L2 = L1 ∩ L2. �
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Kleene’s Theorem 7
—————————————————————————————

Theorem The languages accepted by DFAs are exactly the regular lan-
guages

We will prove this in this and teh next lecture by

1. If L = L(M), for some DFA M , then there is a regular expression
e such that L = L(e) (this lecture)

2. If L = L(e), for some regular expression e, then there is a non-
deterministic finite automaton (NFA) M such that L = L(M).
(next lecture)

3. For every NFA M , there is a DFA M ′ such that L(M) = L(M ′)
(next lecture)
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From DFAs to regular expressions 8
—————————————————————————————

Given the DFA M = 〈Q,Σ, δ, q0, F 〉, we construct for every qi ∈ Q

a regular expression ri such that ri describes the “language accepted
from state qi”:

L(ri) = {w ∈ Σ∗ | δ̂(qi, w) ∈ F}

Let Σ = {a, b}, Q = {q0, q1, q2, q3}. Write, for i ∈ {0, 1, 2, 3}

ri = arj ∪ brk ( ∪ λ) with ∪ λ only if qi ∈ F

if δ(qi, a) = qj , δ(qj, b) = qk

This gives a set of equations, which can be solved by starting from the
last as follows:

• write the last equation as ri = wri + v

• substitute in all other equations ri := w∗v

• remove the last equation



This ends with a regulare expression r0 := e.

Proposition L(M) = L(e)


