Finite Automata

Deterministic Finite State Automaton (DFA) (intuition)

The elements of Σ are the "moves" in the graph A word in Σ^* is a sequence of moves Start state is indicated by '>'; accepting state by double circle There can be several accepting states

The word *abba* is accepted, but *baab* is not accepted (rejected)

 $M = \langle Q, \Sigma, \delta, q_0, F \rangle \text{ with}$ $Q = \{q_0, q_1, q_2\}, \Sigma = \{a, b\}, F = \{q_2\} \text{ and } \delta \text{ given by}$

δ	q_0	q_1	$oldsymbol{q}_2$
a	q_0	q_0	$oldsymbol{q}_2$
b	q_1	$oldsymbol{q}_2$	$oldsymbol{q}_2$

HG

Formal languages, grammars, and automata

Week 2, Spring 2013

1

Deterministic Finite Automata: DFA (formally)

M is a DFA over Σ if $M = (Q, \Sigma, q_0, \delta, F)$ with $Q \\ \Sigma$ is a finite set of states

Reading function $\hat{\delta}: Q \times \Sigma^* {\rightarrow} Q$ (multi-step transition)

$$\begin{aligned} \delta(q,\lambda) &= q\\ [\hat{\delta}(q,a) &= \delta(q,a)]\\ \hat{\delta}(q,wa) &= \delta(\hat{\delta}(q,w),a) \end{aligned}$$

The language accepted by M, notation L(M), is:

$$L(M) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

HG

Formal languages, grammars, and automata

Week 2, Spring 2013

Reading words $w \in \Sigma^*$

Computation for $\hat{\delta}(q, w)$ in the example w = abba:

$$\begin{array}{ll} [q, abba] & \vdash & [\delta(q, a), bba] & & \hat{\delta}(q, a) = \delta(q, a) \\ & \vdash & [\delta(\delta(q, a), b), ba] & & \hat{\delta}(q, ab) = \delta(\delta(q, a), b) \\ & \vdash & [\delta(\delta(\delta(q, a), b), b), a] & & \hat{\delta}(q, abb) = \delta(\delta(\delta(q, a), b), b) \\ & \vdash & [\delta(\delta(\delta(\delta(q, a), b), b), a), \lambda] & & \hat{\delta}(q, abba) = \delta(\delta(\delta(\delta(q, a), b), b), a) \end{array}$$

This computation corresponds to an equivalent definition of $\hat{\delta}$:

$$\begin{aligned} \hat{\delta}(q,\lambda) &= q \\ \hat{\delta}(q,a) &= \delta(q,a) \\ \hat{\delta}(q,aw) &= \hat{\delta}(\delta(q,a),w) \end{aligned}$$

Example transition table for δ with $Q = \{0, 1, 2, 3, 4\}$, $\Sigma = \{a, b\}$, $q_0 = 0$, and $F = \{4\}$

δ	a	b		
0	1	0		
1	1	2		
2	1	3		
3	4	0		
4	4	4		
HG				

We have $\hat{\delta}(0, abba) = 4 \in F$ and $[0, abba] \vdash^* [4, \lambda]$, hence $abba \in L(M)$ Similarly $\hat{\delta}(0, baba) = 1 \notin F$; so even if $[0, baba] \vdash^* [1, \lambda]$ we have $baba \notin L(M)$. Even if $\hat{\delta}(1, bba) = 4 \in F$ and $[1, bba] \vdash^* [4, \lambda]$ we have $bba \notin L(M)$.

Formal languages, grammars, and automata

Week 2, Spring 2013

Manipulating Finite Automata: products for intersection

HG

Formal languages, grammars, and automata

Week 2, Spring 2013

Product of two DFAs

Given two DFAs over the same Σ

$$M_1 = \langle Q_1, \Sigma, \delta_1, q_{01}, F_1 \rangle$$
$$M_2 = \langle Q_2, \Sigma, \delta_2, q_{02}, F_2 \rangle$$

Define

$$M_1 \times M_2 = \langle Q_1 \times Q_2, \Sigma, \delta, q_0, F \rangle$$

with

$$q_0 := \langle q_{01}, q_{02} \rangle$$

$$\delta(\langle q_1, q_2 \rangle, a) := \langle \delta_1(q_1, a), \delta_2(q_2, a) \rangle$$

Then with

$$F := F_1 \times F_2 := \{ \langle q_1, q_2 \rangle \mid q_1 \in F_1 \text{ and } q_2 \in F_2 \}$$

we have

$$L(M_1 \times M_2) = L(M_1) \cap L(M_2)$$

HG

Formal languages, grammars, and automata

Week 2, Spring 2013

5

)13

Closure Properties

Proposition Closure under complement

If L is accepted by some DFA, then so is $\overline{L} = \Sigma^* - L$.

Proof. Suppose that L is accepted by $M = \langle Q, \Sigma, \delta, q_0, F \rangle$.

Then \overline{L} is accepted by $M = \langle Q, \Sigma, \delta, q_0, \overline{F} \rangle$.

Proposition Closure under intersection and union

If L_1 , and L_2 are accepted by some DFA, then so are $L_1 \cap L_2$ and $L_1 \cup L_2$.

Proof. For the intersection, this follows from the product construction on the previous slide.

For the union, this can be seen by the product construction, taking a different F (which one?) or by noticing that $L_1 \cup L_2 = \overline{L_1} \cap \overline{L_2}$.

HG

Formal languages, grammars, and automata

Week 2, Spring 2013

- d
- n
- а
- 13

Kleene's Theorem

Theorem The languages accepted by DFAs are exactly the regular languages

We will prove this in this and teh next lecture by

- 1. If L = L(M), for some DFA M, then there is a regular expression e such that L = L(e) (this lecture)
- 2. If L = L(e), for some regular expression e, then there is a nondeterministic finite automaton (NFA) M such that L = L(M). (next lecture)
- 3. For every NFA M, there is a DFA M' such that L(M) = L(M')(next lecture)

Formal languages, grammars, and automata

Week 2, Spring 2013

From DFAs to regular expressions

Given the DFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$, we construct for every $q_i \in Q$ a regular expression r_i such that r_i describes the "language accepted from state q_i ":

$$L(r_i) = \{ w \in \Sigma^* \mid \hat{\delta}(q_i, w) \in F \}$$

Let $\Sigma = \{a, b\}$, $Q = \{q_0, q_1, q_2, q_3\}$. Write, for $i \in \{0, 1, 2, 3\}$

$$r_i = ar_j \cup br_k \ (\cup \lambda) \qquad \text{with } \cup \lambda \text{ only if } q_i \in F$$

if $\delta(q_i, a) = q_j, \delta(q_j, b) = q_k$

This gives a set of equations, which can be solved by starting from the last as follows:

- write the last equation as $r_i = wr_i + v$
- substitute in all other equations $r_i := w^* v$
- remove the last equation

HG

Formal languages, grammars, and automata

Week 2, Spring 2013

8 -Q

)13

This ends with a regulare expression $r_0 := e$. Proposition L(M) = L(e)