Regular Languages & Non-deterministic finite Automata
Regular Expressions and Regular Languages

\[
\text{rexp}_\Sigma ::= \emptyset \mid \lambda \mid s \mid \text{rexp}_\Sigma \text{rexp}_\Sigma \mid \text{rexp}_\Sigma \cup \text{rexp}_\Sigma \mid \text{rexp}_\Sigma^*
\]

with \(s \in \Sigma \)

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection

If \(L_1, L_2 \) are accepted by some DFA, then so are

- \(\overline{L_1} = \Sigma^* - L_1 \)
- \(L_1 \cup L_2 \)
- \(L_1 \cap L_2 \).
Kleene's Theorem (announced last lecture)

Theorem The languages accepted by DFAs are exactly the regular languages.

We prove this by

1. If $L = L(M)$, for some DFA M, then there is a regular expression e such that $L = L(e)$ (previous lecture).

2. If $L = L(e)$, for some regular expression e, then there is a non-deterministic finite automaton with λ-steps (NFA$_\lambda$) M such that $L = L(M)$. (this lecture)

3. For every NFA$_\lambda$, M, there is a DFA M' such that $L(M) = L(M')$ (this lecture).
Non-deterministic finite automaton (NFA)

\[\delta \]

\begin{align*}
\delta & | q_0 & q_1 & q_2 \\
\text{a} & q_0 & \emptyset & \emptyset \\
\text{b} & \{q_0, q_1\} & q_2 & \emptyset \\
\end{align*}

in shorthand

\[\delta \]

\begin{align*}
\delta & | q_0 & q_1 & q_2 \\
\text{a} & q_0 & & \\
\text{b} & q_0, q_1 & q_2 &
\end{align*}
Non-deterministic Finite Automata: NFA (formally)

M is a DFA over Σ if $M = (Q, \Sigma, q_0, \delta, F)$ with

- Q is a finite set of states
- Σ is a finite alphabet
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is a finite set of final states
- $\delta : Q \times \Sigma \rightarrow \mathcal{P}(Q)$ is the transition function

$\mathcal{P}(Q)$ denotes the collection of subsets of Q

Reading function $\hat{\delta} : Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$ (multi-step transition)

\[
\hat{\delta}(q, \lambda) = \{q\}
\]
\[
\hat{\delta}(q, w\lambda) = \{q'' \mid q'' \in \delta(q', a) \text{ for some } q' \in \hat{\delta}(q, w)\}
\]

The language accepted by M, notation $L(M)$, is:

$L(M) = \{w \in \Sigma^* \mid \exists q_f \in F(q_f \in \hat{\delta}(q_0, w))\}$
Suppose we want \(\{w \mid \#_a \text{ even or } \#_b \geq 1\} = L_1 \cup L_2 \)

First idea: put the two machines “nondeterministically” together

The NFA on the right accepts ‘aaa’ which is wrong!
Now we add λ transitions or 'silent steps' to NFAs

In a NFA_λ we allow

$$\delta(q, \lambda) = q'$$

for $q \neq q'$. That means

$$\delta : Q \times (\Sigma \cup \{\lambda\}) \rightarrow \mathcal{P}(Q)$$
A finite automaton M is called insulated

(i) if q_0 has no in-going arrows
(ii) there is only one final state which has no out-going arrows

Proposition. One can insulate any machine M such that
the result M' accepts the same language

Proof. By adding states and silent steps, for example
Toolkit building NFA_λs

$L_1 = L$

L_2

$L_1 \cup L_2$ insulated

$L_1 L_2$ insulated

L^* insulated
Proposition. For every regular expression e there is an NFA M_e such that

$$L(M_e) = L(e).$$

Proof. Apply the toolkit. M_e can be found ‘by induction on the structure of e’: first do this for the simplest regular expressions; then for a composed regular expression compose the automata. ■

Corollary. For every regular language L there is an NFA M that accepts L (so $L(M) = L$).
Avoiding non-determinism

Keep track of where you can go!
A combination is final if one of the members is final.
We show how a NFA can be turned into a DFA

Let \(M \) be a NFA given by \((Q, \Sigma, q_0, \delta, F)\)

Define \(M^+ \) as \((Q^+, \Sigma, q_0^+, \delta^+, F^+)\) by

\[
Q^+ = \mathcal{P}(Q) \\
q_0 = \{q_0\} \\
\delta^+(H, a) = \bigcup_{q \in H} \delta(q, a), \quad \text{for } H \subseteq Q, \\
F^+ = \{H \subseteq Q \mid H \cap F \neq \emptyset\}
\]

Then \(M^+ \) is a DFA accepting the same language as \(M \)
Every NFA \(M \) can be turned into an NFA \(M' \) accepting the same language.

Corollary. For every regular language \(L \) there is a DFA \(M \) that accepts \(L \) (so \(L(M) = L \)).