Regular Languages & Non-deterministic finite Automata

Previous Weeks

Regular Expressions and Regular Languages

 $| \mathtt{rexp}_{\Sigma} ::= \emptyset \mid \lambda \mid s \mid \mathtt{rexp}_{\Sigma} \, \mathtt{rexp}_{\Sigma} \mid \mathtt{rexp}_{\Sigma} \cup \mathtt{rexp}_{\Sigma} \mid \mathtt{rexp}_{\Sigma}^{*} \mid$

with $\mathbf{s} \in \Sigma$

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection

If L_1, L_2 are accepted by some DFA, then so are

- $\overline{L_1} = \Sigma^* L_1$
- $L_1 \cup L_2$
- $L_1 \cap L_2$.

HG

Theorem The languages accepted by DFAs are exactly the regular languages

We prove this by

HG

- 1. If L = L(M), for some DFA M, then there is a regular expression e such that L = L(e) (previous lecture)
- 2. If L = L(e), for some regular expression e, then there is a nondeterministic finite automaton with λ -steps (NFA_{λ}) M such that L = L(M). (this lecture)
- 3. For every NFA_{λ}, M, there is a DFA M' such that L(M) = L(M') (this lecture)

Non-deterministic finite automaton (NFA)

δ	q_0	q_1	$oldsymbol{q}_2$
a	q_0	Ø	Ø
b	$\left\{q_0, q_1\right\}$	$oldsymbol{q}_2$	Ø

in shorthand

δ	q_0	q_1	$oldsymbol{q}_2$
a	q_0		
b	q_0, q_1	$oldsymbol{q}_2$	

Languages & Automata

Non-deterministic Finite Automata: NFA (formally)

 $\begin{array}{ll} M \text{ is a DFA over } \Sigma \text{ if } M = (Q, \Sigma, q_0, \delta, F) \text{ with} \\ Q & \text{ is a finite set of states} \\ \Sigma & \text{ is a finite alphabet} \\ q_0 \in Q & \text{ is the initial state} \\ F \subseteq Q & \text{ is the initial state} \\ \delta : Q \times \Sigma \rightarrow \mathcal{P}(Q) & \text{ is the transition function} \end{array}$

 $\mathcal{P}(Q)$ denotes the collection of subsets of Q

Reading function $\hat{\delta}: Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$ (multi-step transition)

$$\hat{\delta}(q,\lambda) = \{q\} \hat{\delta}(q,wa) = \{q'' \mid q'' \in \delta(q',a) \text{ for some } q' \in \hat{\delta}(q,w)\}$$

The language accepted by M, notation L(M), is:

$$L(M) = \{ w \in \Sigma^* \mid \exists q_f \in F(q_f \in \hat{\delta}(q_0, w)) \}$$

Languages & Automata

Week 3, spring 2013

HG

Parallel NFAs for union (wrong way: short circuit!)

Suppose we want $\{w \mid \#_a \text{ even or } \#_b \ge 1\} = L_1 \cup L_2$ First idea: put the two machines "nondeterministically" together

The NFA on the right accepts 'aaa' which is wrong!

Languages & Automata

Now we add λ transitions or 'silent steps' to NFAs

In a NFA $_{\lambda}$ we allow

$$\delta(q,\lambda) = q'$$

for $q \neq q'$. That means

$$\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow \mathcal{P}(Q)$$

HG

Languages & Automata

Insulated machines

A finite automaton M is called insulated

- (i) if q_0 has no in-going arrows
- (ii) there is only one final state which has no out-going arrows

Proposition. One can insulate any machine M such that

the result M' accepts the same language

Proof. By adding states and silent steps, for example

HG

Languages & Automata

Toolkit building NFA $_\lambda$ s

Proposition. For every regular expression e there is an NFA_{λ} M_e such that

$$L(M_e) = L(e).$$

Proof. Apply the toolkit. M_e can be found 'by induction on the structure of e': first do this for the simplest regular expressions; then for a composed regular expression compose the automata.

Corollary. For every regular language L there is an NFA_{λ} M that accepts L (so L(M) = L).

Languages & Automata

Avoiding non-determinism

HG

Languages & Automata

Eliminating non-determinism

We show how a NFA can be turned into a DFA Let M be a NFA given by $(Q, \Sigma, q_0, \delta, F)$ Define M^+ as $(Q^+, \Sigma, q_0^+, \delta^+, F^+)$ by

$$Q^{+} = \mathcal{P}(Q)$$

$$q_{0} = \{q_{0}\}$$

$$\delta^{+}(H, a) = \bigcup_{q \in H} \delta(q, a), \quad \text{for } H \subseteq Q,$$

$$F^{+} = \{H \subseteq Q \mid H \cap F \neq \emptyset\}$$

Then M^+ is a DFA accepting the same language as M

HG

Languages & Automata

Every NFA $_{\lambda}~M$ can be turned into an NFA M' accepting the same language.

Corollary. For every regular language L there is a DFA M that accepts L (so L(M) = L).

Languages & Automata