Regular Languages \& Non-deterministic finite Automata

Regular Expressions and Regular Languages

$\operatorname{rexp}_{\Sigma}::=\emptyset|\lambda| s\left|\operatorname{rexp}_{\Sigma} \operatorname{rexp}_{\Sigma}\right| \operatorname{rexp}_{\Sigma} \cup \exp _{\Sigma} \mid \operatorname{rexp}_{\Sigma}^{*}$
with $s \in \Sigma$

Deterministic Finite Automata, DFA

Proposition Closure under complement, union, intersection
If L_{1}, L_{2} are accepted by some DFA, then so are

- $\overline{L_{1}}=\Sigma^{*}-L_{1}$
- $L_{1} \cup L_{2}$
- $L_{1} \cap L_{2}$.

Theorem The languages accepted by DFAs are exactly the regular lan-

guages

We prove this by

1. If $L=L(M)$, for some DFA M, then there is a regular expression e such that $L=L(e)$ (previous lecture)
2. If $L=L(e)$, for some regular expression e, then there is a nondeterministic finite automaton with λ-steps (NFA_{λ}) M such that $L=L(M)$. (this lecture)
3. For every $\mathrm{NFA}_{\lambda}, M$, there is a DFA M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$ (this lecture)

M is a DFA over Σ if $M=\left(Q, \Sigma, q_{0}, \delta, F\right)$ with
$Q \quad$ is a finite set of states
Σ
is a finite alphabet
$q_{0} \in Q$
$F \subseteq Q$
is the initial state
$\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)$
is a finite set of final states
$\mathcal{P}(Q)$ denotes the collection of subsets of Q
Reading function $\hat{\delta}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$ (multi-step transition)

$$
\begin{aligned}
\hat{\delta}(q, \lambda) & =\{q\} \\
\hat{\delta}(q, w a) & =\left\{q^{\prime \prime} \mid q^{\prime \prime} \in \delta\left(q^{\prime}, a\right) \text { for some } q^{\prime} \in \hat{\delta}(q, w)\right\}
\end{aligned}
$$

The language accepted by M, notation $L(M)$, is:

$$
L(M)=\left\{w \in \Sigma^{*} \mid \exists q_{f} \in F\left(q_{f} \in \hat{\delta}\left(q_{0}, w\right)\right)\right\}
$$

Suppose we want $\left\{w \mid \#_{a}\right.$ even or $\left.\#_{b} \geq 1\right\}=L_{1} \cup L_{2}$
First idea: put the two machines "nondeterministically" together

The NFA on the right accepts 'aaa' which is wrong!

Now we add λ transitions or 'silent steps' to NFAs

In a NFA_{λ} we allow

$$
\delta(q, \lambda)=q^{\prime}
$$

for $q \neq q^{\prime}$. That means

$$
\delta: Q \times(\Sigma \cup\{\lambda\}) \rightarrow \mathcal{P}(Q)
$$

A finite automaton M is called insulated
(i) if q_{0} has no in-going arrows
(ii) there is only one final state which has no out-going arrows

Proposition. One can insulate any machine M such that the result M^{\prime} accepts the same language
Proof. By adding states and silent steps, for example

Proposition. For every regular expression e there is an $\mathrm{NFA}_{\lambda} M_{e}$ such that

$$
L\left(M_{e}\right)=L(e) .
$$

Proof. Apply the toolkit. M_{e} can be found 'by induction on the structure of e^{\prime} : first do this for the simplest regular expressions; then for a composed regular expression compose the automata.
Corollary. For every regular language L there is an $\mathrm{NFA}_{\lambda} M$ that accepts L (so $L(M)=L$).

Keep track of where
you can go!
A combination is final
if one of the members is
final.

We show how a NFA can be turned into a DFA
Let M be a NFA given by $\left(Q, \Sigma, q_{0}, \delta, F\right)$
Define M^{+}as $\left(Q^{+}, \Sigma, q_{0}^{+}, \delta^{+}, F^{+}\right)$by

$$
\begin{aligned}
Q^{+} & =\mathcal{P}(Q) & \\
q_{0} & =\left\{q_{0}\right\} & \text { for } H \subseteq Q \\
\delta^{+}(H, a) & =\bigcup_{q \in H} \delta(q, a), & \\
F^{+} & =\{H \subseteq Q \mid H \cap F \neq \emptyset\} &
\end{aligned}
$$

Then M^{+}is a DFA accepting the same language as M

Every $\mathrm{NFA}_{\lambda} M$ can be turned into an NFA M^{\prime} accepting the same language.
Corollary. For every regular language L there is a DFA M that accepts L (so $L(M)=L$).

