Non-Regular Languages

Theorem. Let $L \subseteq \Sigma^{*}$. Then the following are equivalent
(i) L is "machine-regular", i.e. $L=L(M)$ for some DFA (NFA, NFA ${ }_{\lambda}$)
(ii) L is regular, i.e. $L=L(e)$ for some regular expression

Proof. See previous lectures.
So:

- To show that a language is regular we can give a regular expression or a (non-)deterministic automaton (with λ-steps).
- To show closure properties of the class of regular languages, we can use regular expressions, deterministic automata, non-deterministic automata, ...

How to show that a language is not regular?
$\begin{array}{lll}\text { HG Formal Languages. Grammars \& Machines } & \text { Week 4, Spring 2013 }\end{array}$

Example: Consider $\Sigma=\{a, b\}$ and the automaton

accepting

$$
\left\{w \in \Sigma^{*} \mid \#_{b}(w) \geq 1 \wedge \#_{a}(w) \text { is even }\right\}
$$

What happens if a word of length $4,5,6,7, \ldots$ is accepted?
It has made a 'cycle' which can be repeated arbitrarily often!
For example, baaaa is accepted, and also all $b a a(a a)^{n}$ are accepted.
We say $a a$ is a substring that can be pumped.

Formal Languages, Grammars \& Machines
Week 4, Spring 2013

Let $\Sigma=\{a, b\}$. We will develop a technique that can be used to show that languages are not regular.
This technique will be applied to show that

$$
\left\{a^{n} b^{n} \in \Sigma^{*} \mid n \geq 0\right\}
$$

is not regular
and to show that

$$
\left\{w \in \Sigma^{*} \mid w \text { is a palindrome }\right\}
$$

is not regular.
A palindrome is a word w such that $w^{R}=w$.
Remember that w^{R} is the reverse of w, defined by

$$
\begin{aligned}
\lambda^{R} & :=\lambda \\
(s w)^{R} & :=w^{R} s
\end{aligned}
$$

HG

Theorem. Let $L \subseteq \Sigma^{*}$ be a regular language
Then there exists a number $p \geq 1$ (pumping number) such that
for every $w \in L$ with $|w| \geq p$ one has the following
(i) w can be split in three parts, $w=x y z$,
(ii) with $|x y| \leq p$ and $|y| \geq 1$,
(iii) such that for all $n \geq 0$ one has $x y^{n} z \in L$.

Corollary $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular
Proof. Suppose L is regular. Let $p \geq 1$ be as in the pumping lemma
Take $w=a^{p} b^{p}$. Then $w \in L$ and $|w| \geq p$
Therefore there are x, y, z such that we can write $a^{p} b^{p}=x y z$, with $|x y| \leq p$ and $x y^{n} z \in L$ for all $n \geq 0$.
Then $y=a^{q}$, for some $q \geq 1$. But then $x y^{2} z \notin L$. Contradiction.

Let L be regular. Then L is m-regular. Let L be accepted by M.
Let M have p states
Then a word w of length $\geq p$ must pass twice a state q Then $w=x y z$, where we read x to go to q, read y to loop at q, read z to go to a final node. But then $x y^{n} z$ is accepted for all n.
Example $a b c d \in L(M)$

Since q_{1} is visited twice we can pump: $a(b c)^{n} d \in L(M)$ for all $n \geq 0$.
HG Formal Languages, Grammars \& Machines Week 4, Spring 2013

$$
\begin{aligned}
\neg \exists x \cdot P(x) & \Leftrightarrow \forall x \cdot \neg P(x) \\
\neg \forall x \cdot P(x) & \Leftrightarrow \exists x \cdot \neg P(x) \\
\neg \exists x \cdot[Q(x) \& P(x)] & \Leftrightarrow \forall x \cdot[Q(x) \Rightarrow \neg P(x)] \\
\neg x \cdot[Q(x) \Rightarrow P(x)] & \Leftrightarrow \exists x \cdot[Q(x) \& \neg P(x)]
\end{aligned}
$$

Pumping lemma. For L a language, L is regular $\Rightarrow L$ can be pumped We use this as follows: For L a language,

$$
L \text { cannot be pumped } \Rightarrow L \text { is not regular }
$$

L can be pumped means:

$$
\begin{aligned}
& \exists p \geq 1 \forall w \in L \cdot(|w| \geq p \Rightarrow \\
& \left.\exists x y z \cdot\left[w=x y z \&|x y| \leq p \&|y| \geq 1 \& \forall n \in \mathbb{N} \cdot x y^{n} z \in L\right]\right)
\end{aligned}
$$

L cannot be pumped means:

$$
\begin{aligned}
& \forall p \geq 1 \exists w \in L .(|w| \geq p \& \\
& \left.\forall x y z .\left[w=x y z \&|x y| \leq p \&|y| \geq 1 \& \exists n \in \mathbb{N} . x y^{n} z \notin L\right]\right)
\end{aligned}
$$

To show that L is not regular it suffices to show it cannot be pumped.

To show that L is not regular we need to do the following:
For each $p \geq 1$, find some $w \in L$ of length $\geq p$ so that

- for every way of splitting up w as $w=x y z$,
- with $|x y| \leq p$ and $|y| \geq 1$,
- you can find an $n \geq 0$ for which $x y^{n} z$ is not in L.

Application: $L=\left\{w \in \Sigma^{*} \mid w\right.$ is a palindrome $\}$ is not regular.
Proof. We follow the procedure above.
Let $p \geq 1$ (arbitrary)
Take $w=a^{p} b a^{p}$. Then $w \in L$ (check) and $|w| \geq p$ (check)
Let x, y, z (arbitrary) be so that $a^{p} b a^{p}=x y z$, with $|x y| \leq p$ and $|y| \geq 1$.
Take $n=0$. Then $x y^{n} z=x y^{0} z \notin L$ (check).
So, L is not regular.
HG Formal Languages, Grammars \& Machines
Week 4, Spring 2013

Let $\Sigma:=\{a, b\}$. We know that $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.
Is $L^{\prime}:=\left\{w \in \Sigma^{*} \mid \forall n \in \mathbb{N}\left(w \neq a^{n} b^{n}\right)\right\}$ regular?
Answer: No it is not. If L^{\prime} is regular, then $\overline{L^{\prime}}=L$ would also be regular, but L is not regular! So L^{\prime} is not regular.

Lemma If L is not regular, then also \bar{L} and L^{R} are not regular
Let $\Sigma:=\{a, b, c\}$.
Is $L^{\prime \prime}:=\left\{a^{n} c^{p} b^{n} \in \Sigma^{*} \mid n \geq 0, p \geq 0\right\}$ regular?
Answer: No it is not. $L=L^{\prime \prime} \cap L\left(a^{*} b^{*}\right)$. If $L^{\prime \prime}$ is regular, then also L is regular, but it is not!

Lemma If L is not regular, $L=L_{1} \cap L_{2}$, with L_{1} regular, then L_{2} is not regular.

