Non-Regular Languages

Theorem. Let $L \subseteq \Sigma^*$. Then the following are equivalent

(i) L is "machine-regular", i.e. L = L(M) for some DFA (NFA, NFA_{λ})

(ii) L is regular, i.e. L = L(e) for some regular expression

Proof. See previous lectures.

So:

- To show that a language is regular we can give a regular expression or a (non-)deterministic automaton (with λ -steps).
- To show closure properties of the class of regular languages, we can use regular expressions, deterministic automata, non-deterministic automata, ...

How to show that a language is *not* regular?

Formal Languages, Grammars & Machines

Regular languages van be pumped!

Example: Consider $\Sigma = \{a, b\}$ and the automaton



accepting

 $\{w \in \Sigma^* \mid \#_b(w) \ge 1 \land \#_a(w) \text{ is even}\}$

What happens if a word of length $4, 5, 6, 7, \ldots$ is accepted? It has made a 'cycle' which can be repeated arbitrarily often! For example, *baaaa* is accepted, and also all $baa(aa)^n$ are accepted. We say aa is a substring that *can be pumped*.

Formal Languages, Grammars & Machines

Let $\Sigma = \{a, b\}$. We will develop a technique that can be used to show that languages are not regular.

This technique will be applied to show that

$$\{a^n b^n \in \Sigma^* \mid n \ge 0\}$$

is not regular

and to show that

 $\{w \in \Sigma^* \mid w \text{ is a palindrome}\}$

is not regular.

A palindrome is a word w such that $w^R = w$.

Remember that w^R is the *reverse of* w, defined by

$$\begin{array}{rcl} \lambda^R & := & \lambda \\ (s \, w)^R & := & w^R \, s \end{array}$$

HG

Formal Languages, Grammars & Machines

Theorem. Let $L \subseteq \Sigma^*$ be a regular language

Then there exists a number $p \ge 1$ (pumping number) such that

for every $w \in L$ with $|w| \ge p$ one has the following

- (i) w can be split in three parts, w = xyz,
- (ii) with $|xy| \le p$ and $|y| \ge 1$,
- (iii) such that for all $n \ge 0$ one has $xy^n z \in L$.

Corollary $L = \{a^n b^n \mid n \ge 0\}$ is not regular

Proof. Suppose L is regular. Let $p \ge 1$ be as in the pumping lemma Take $w = a^p b^p$. Then $w \in L$ and $|w| \ge p$

Therefore there are x, y, z such that we can write $a^p b^p = xyz$, with $|xy| \le p$ and $xy^n z \in L$ for all $n \ge 0$.

Then $y = a^q$, for some $q \ge 1$. But then $xy^2z \notin L$. Contradiction.

Formal Languages, Grammars & Machines

Proof of the Pumping Lemma

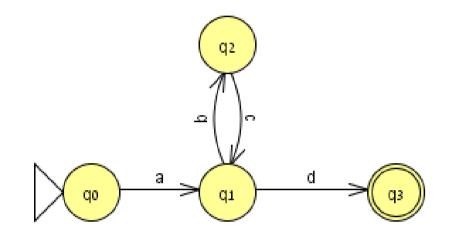
Let L be regular. Then L is m-regular. Let L be accepted by M.

Let M have p states

Then a word w of length $\geq p$ must pass twice a state q

Then w = xyz, where we read x to go to q, read y to loop at q,

read z to go to a final node. But then $xy^n z$ is accepted for all n. Example $abcd \in L(M)$



Since q_1 is visited twice we can pump: $a(bc)^n d \in L(M)$ for all $n \ge 0$.

HG

Formal Languages, Grammars & Machines

$$\neg \exists x. P(x) \iff \forall x. \neg P(x)$$
$$\neg \forall x. P(x) \iff \exists x. \neg P(x)$$
$$\neg \exists x. [Q(x) \& P(x)] \iff \forall x. [Q(x) \Rightarrow \neg P(x)]$$
$$\neg \forall x. [Q(x) \Rightarrow P(x)] \iff \exists x. [Q(x) \& \neg P(x)]$$

Formal Languages, Grammars & Machines

Pumping lemma. For L a language, L is regular $\Rightarrow L$ can be pumped We use this as follows: For L a language,

L cannot be pumped $\Rightarrow L$ is not regular

L can be pumped means:

 $\exists p \ge 1 \forall w \in L. (|w| \ge p \Rightarrow)$ $\exists xyz. [w = xyz \& |xy| \le p \& |y| \ge 1 \& \forall n \in \mathbb{N} . xy^n z \in L])$

L cannot be pumped means:

 $\forall p \ge 1 \exists w \in L.(|w| \ge p \&$ $\forall xyz.[w = xyz \& |xy| \le p \& |y| \ge 1 \& \exists n \in \mathbb{N} . xy^n z \notin L])$

To show that L is not regular it suffices to show it cannot be pumped.

Formal Languages, Grammars & Machines

Using the pumping lemma to show that a language is non-regular 8

To show that L is not regular we need to do the following:

For each $p \ge 1$, find some $w \in L$ of length $\ge p$ so that

- for every way of splitting up w as w = x y z,
- with $|x y| \le p$ and $|y| \ge 1$,
- you can find an $n \ge 0$ for which $x y^n z$ is not in L.

Application: $L = \{w \in \Sigma^* \mid w \text{ is a palindrome}\}$ is not regular. Proof. We follow the procedure above. Let $p \ge 1$ (arbitrary) Take $w = a^p b a^p$. Then $w \in L$ (check) and $|w| \ge p$ (check) Let x, y, z (arbitrary) be so that $a^p b a^p = xyz$, with $|xy| \le p$ and $|y| \ge 1$. Take n = 0. Then $xy^n z = xy^0 z \notin L$ (check). So, L is not regular.

Proving that a language is non-regular

Let $\Sigma := \{a, b\}$. We know that $L = \{a^n b^n \mid n \ge 0\}$ is not regular.

Is $L' := \{ w \in \Sigma^* \mid \forall n \in \mathbb{N} \ (w \neq a^n b^n) \}$ regular?

Answer: No it is not. If L' is regular, then $\overline{L'} = L$ would also be regular, but L is not regular! So L' is not regular.

Lemma If L is *not* regular, then also \overline{L} and L^R are not regular Let $\Sigma := \{a, b, c\}$. Is $L'' := \{a^n c^p b^n \in \Sigma^* \mid n \ge 0, p \ge 0\}$ regular?

Answer: No it is not. $L = L'' \cap L(a^*b^*)$. If L'' is regular, then also L is regular, but it is not!

Lemma If L is not regular, $L = L_1 \cap L_2$, with L_1 regular, then L_2 is not regular.

Formal Languages, Grammars & Machines

Week 4, Spring 2013

HG