Regular Languages & Finite Automata

Grammars: ways to generate (produce) languages

Now we are going to play a different 'ball-game'. Let $\Sigma = \{a, b\}$

 G_1 a context-free grammar

Productions, always start with S

 $\mathtt{S} \; \Rightarrow \; \mathtt{E} \; \Rightarrow \; \mathtt{aEa} \; \Rightarrow \; \mathtt{abEba} \; \Rightarrow \; \mathtt{abba}$

 $S \Rightarrow E \Rightarrow bEb \Rightarrow baEab \Rightarrow babEbab \Rightarrow babaEabab \Rightarrow babaabab$

 $S \Rightarrow 0 \Rightarrow b0b \Rightarrow bab$

 $S \Rightarrow 0 \Rightarrow b0b \Rightarrow ba0ab \Rightarrow babab$

 $L(G) = \{ w \in \Sigma^* \mid w \text{ is a palindrome} \},$

where w is a palindrome if $w = w^R$

and \boldsymbol{w}^R denotes word reversal. (See earlier lectures.)

HG Formal Languages, Grammars & Machines Week 5, Spring 2013

Formal definition of a context-free grammar

Let Σ be a finite alphabet

A context-free grammar G over Σ needs a finite set V of auxiliary (help) symbols and consists of productionrules of the vorm

$$X \to w$$

with $X \in V$ and $w \in (\Sigma \cup V)^*$. There is an $S \in V$ (start)

Using G a language is generated using a relation \Rightarrow ('produces') defined as follows (where u, v, w, x, y are arbitrary elements of $(\Sigma \cup V)^*$)

$$X o w$$
 implies $xXy \Rightarrow xwy$ $u \Rightarrow v, \ v \Rightarrow w$ implies $u \Rightarrow w$

The language generated by G is

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow w \}$$

Notation.
$$X \to w_1 \mid w_2$$
 abbreviates $\begin{array}{ccc} X & \to & w_1 \\ X & \to & w_2 \end{array}$

A language L is *context-free* if L=L(G) for some context-free G

HG Formal Languages, Grammars & Machines Week 5, Spring 2013

What is a grammar G_3 such that

$$L(G_3) = \{ \mathbf{a}^n \mathbf{b}^n \mid n > 0 \}$$
?

HG

$$\mathtt{S} \; o \; \mathsf{ab} \, | \; \mathsf{aSb} \, | \; G_3$$

Formal Languages, Grammars & Machines

Week 5, Spring 2013

Other context-free languages 3	3
Is there a grammar G_2 such that	_
$L(G_2) = \{\mathbf{a}^n \mathbf{b}^n \mid n \ge 0\}?$	
extstyle ext	
All possible productions	
$S \longrightarrow aSb \longrightarrow aaSbb \longrightarrow aaaSbbb \longrightarrow \cdots \longrightarrow a^nSb^n \longrightarrow \cdots$	•

More generation

Let $\Sigma = \{ a, b, c \}$

Claim. $L = \{\mathbf{a}^n \mathbf{b}^m \mathbf{c}^{2n+1} \mid n \geq 0\}$ is context-free

Let us first show

 $L' = \{\mathbf{a}^n \mathbf{c}^{2n+1} \mid n \ge 0\} \text{ is context-free }$

Use G' given by $\mathbb{S} \to \mathbb{C} \mid \mathbf{aScc}$

Fact. $\{a^nb^nc^n \mid n \ge 0\}$ is *not* context-free

HG Formal Languages, Grammars & Machines Week 5, Spring 2013

Generation of some languages we have already seen

Let $\Sigma = \{ a, b \}$

Claim. $L = \{w \mid w \text{ ends with bb}\}$ is context-free

Let $\Sigma = \{ a, b \}$

Claim. $L = \{w \mid w \text{ contains exactly two } \mathbf{a}'\mathbf{s} \}$ is context-free

HG Formal Languages, Grammars & Machines

Week 5, Spring 2013