Exercises lecture 1
Formal languages, grammars, and automata
April 19, 2013

1. Regular languages

Read: Chapter 1 and Section 2.1 of the Reader Ruohonen; the slides of the course on the webpage.

Exercise 2 can be handed in with Nico Broeder or Jasper Derikx.

NB: Exercise 4 is only for devotees, to show that the subject is non-trivial.

For a \(w \in \Sigma^* \), let \(\#(w) \) be the number of symbols in \(w \); moreover for \(s \in \Sigma \), let \(\#_s(w) \) be the number of occurrences of \(s \) in \(w \). For example \(\#(aab) = 3 \), \(\#_a(aab) = 2 \), and \(\#_b(aab) = 1 \).

1. What are \(L_1 = L((a \cup b)^*) \), \(L_2 = L((a^* b^*)^*) \), and \(L_3 = ((ab^*)^*) \). Show that precisely two of these languages are equal.

2. (a) Give a regular expression for \(\{ w \in \{a,b,c\}^* \mid \#(w) = 3 \} \).

 (b) Same for \(\{ w \in \{a,b,c\}^* \mid \#(w) \geq 3 \} \).

 (c) Same for \(\{ w \in \{a,b\}^* \mid aa \) occurs exactly twice in \(w \} \).

 [Hint. Beware of the string \(aaa \)!]

3. Prove that

 \(\{ w \in \{a,b\}^* \mid bb \) does not occur in \(w \} = L(a^*(baa^*)^*b\lambda) \),

 where \(b\lambda = (b \cup \lambda) \). We have omitted some parentheses; the full regular expression is \((a^*)(((ba)(a^*))^*(b \cup \lambda))\).

4. [This exercise is at the moment rather hard, later less so!]

 Show that the language

 \(\{ w \in \{a,b\}^* \mid \#_a(w) \) and \(\#_b(w) \) are even \}

 is regular.

 Easier is to show this for

 \(\{ w \in \{a,b\}^* \mid \#_a(w) \) is even \}.
