Exercises lecture 1 Formal languages, grammars, and automata

April 19, 2013

1. Regular languages

Read: Chapter 1 and Section 2.1 of the Reader Ruohonen; the slides of the course on the webpage.

Exercise 2 can be handed in with Nico Broeder or Jasper Derikx.

NB: Exercise 4 is only for devotees, to show that the subject is non-trivial.
For a $w \in \Sigma^{*}$, let $\#(w)$ be the number of symbols in w; moreover for $s \in \Sigma$, let $\# s(w)$ be the number of occurrences of s in w. For example $\#(a a b)=3$, $\#_{a}(a a b)=2$, and $\#_{b}(a a b)=1$.

1. What are $L_{1}=L\left((a \cup b)^{*}\right), L_{2}=L\left(\left(a^{*} b^{*}\right)^{*}\right)$, and $L_{3}=\left(\left(a b^{*}\right)^{*}\right)$. Show that precisely two of these languages are equal.
2. (a) Give a regular expression for

$$
\left\{w \in\{a, b, c\}^{*} \mid \#(w)=3\right\}
$$

(b) Same for

$$
\left\{w \in\{a, b, c\}^{*} \mid \#(w) \geq 3\right\}
$$

(c) Same for

$$
\left\{w \in\{a, b\}^{*} \mid a a \text { occurs exactly twice in } w\right\}
$$

[Hint. Beware of the string aaa!]
3. Prove that

$$
\left\{w \in\{a, b\}^{*} \mid b b \text { does not occur in } w\right\}=L\left(a^{*}\left(b a a^{*}\right)^{*} b ?\right)
$$

where $b ?=(b \cup \lambda)$. We have omitted some parentheses; the full regular expression is $\left(\left(a^{*}\right)\left(\left(\left((b a)\left(a^{*}\right)\right)^{*}\right)(b \cup \lambda)\right)\right)$.
4. [This exercise is at the moment rather hard, later less so!]

Show that the language

$$
\left\{w \in\{a, b\}^{*} \mid \#_{a}(w) \text { and } \#_{b}(w) \text { are even }\right\}
$$

is regular.
Easier is to show this for

$$
\left\{w \in\{a, b\}^{*} \mid \#_{a}(w) \text { is even }\right\}
$$

