Exercises lecture 2

Formal languages, grammars, and automata
27 april, 2013

2. Regular languages, Finite Automata

Read: Chapter 2, pages 5-8 of the Reader Ruohonen; the slides of the course on the webpage.
Exercise 3 can be handed in with Nico Broeder or Jasper Derikx.

1. Let M be the deterministic finite automaton (DFA) given by

$$
\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle
$$

with $\Sigma=\{a, b, c\}, Q=\left\{q_{0}, q_{A}, q_{B}, q_{C}\right\}, \delta$ given by the table

δ	q_{0}	q_{A}	q_{B}	q_{C}
a	q_{A}	q_{0}	q_{C}	q_{B}
b	q_{B}	q_{C}	q_{0}	q_{A}
c	q_{C}	q_{B}	q_{A}	q_{0}

and $F=\left\{q_{0}\right\}$.
(a) Make a state transition diagram for M.
(b) Determine for the following words whether they belong to $L(M)$: $a b b a, b a a b, b a c, c a c$.
(c) Give a regular expression e such that $L(e)=L(M)$.
2. Let a DFA M be given by
(a) Describe the words accepted by M.
(b) Give a regular expression e such that $L(e)=L(M)$.

3. $\Sigma=\{a, b\}$.
(a) Give a DFA that accepts $L_{1}:=\left\{w \in \Sigma^{*} \mid w\right.$ does not contain $\left.a b\right\}$, and prove that your answer is correct.
(b) Give a DFA that accepts $L_{2}:=\left\{w \in \Sigma^{*} \mid w\right.$ every a in w is directly followed by a $\left.b\right\}$ and prove that your answer is correct.
(c) Give a DFA that accepts $L_{3}:=\left\{w \in \Sigma^{*} \mid w\right.$ contains $a a$ twice $\}$. (Be ware of aaa.)

