Exercises lecture 2

Formal languages, grammars, and automata

27 april, 2013

2. Regular languages, Finite Automata

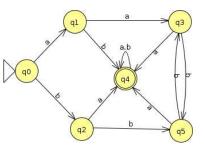
Read: Chapter 2, pages 5–8 of the Reader Ruohonen; the slides of the course on the webpage.

Exercise 3 can be handed in with Nico Broeder or Jasper Derikx.

1. Let M be the deterministic finite automaton (DFA) given by

$$\langle Q, \Sigma, \delta, q_0, F \rangle$$

with $\Sigma = \{a, b, c\}, Q = \{q_0, q_A, q_B, q_C\}, \delta$ given by the table


δ	q_0	q_A	q_B	q_C
a	q_A	q_0	q_C	q_B
b	q_B	q_C	q_0	q_A
с	q_C	q_B	q_A	q_0

and $F = \{q_0\}.$

- (a) Make a state transition diagram for M.
- (b) Determine for the following words whether they belong to L(M): abba, baab, bac, cac.
- (c) Give a regular expression e such that L(e) = L(M).

2. Let a DFA M be given by

- (a) Describe the words accepted by M.
- (b) Give a regular expression e such that L(e) = L(M).

- 3. $\Sigma = \{a, b\}.$
 - (a) Give a DFA that accepts $L_1 := \{ w \in \Sigma^* \mid w \text{ does not contain } ab \}$, and prove that your answer is correct.
 - (b) Give a DFA that accepts $L_2 := \{ w \in \Sigma^* \mid w \text{ every } a \text{ in } w \text{ is directly followed by a } b \}$ and prove that your answer is correct.
 - (c) Give a DFA that accepts $L_3 := \{ w \in \Sigma^* \mid w \text{ contains } aa \text{ twice} \}$. (Be ware of *aaa*.)