Exercises week 3

Languages and Automata

May 17, 2013

3. Regular languages, Finite Automata

Exercise 3.2 can be made and handed in; Exercise (*) is a bit harder. Let $\Sigma = \{a, b\}.$

3.1. 1. Construct a DFA M_1 such that

$$L(M) = L_1 = \{ w \in \Sigma^* \mid \#_a(w) \text{ is divisable by } 3 \}.$$

2. Construct an M_2 such that

$$L(M) = L_2 = \{ w \in \Sigma^* \mid \#_b(w) \text{ is divisable by } 2 \}.$$

- 3. Construct a NFA_{λ} M_3 such that $L(M_3) = L_1 \cup L_2$.
- 4. Construct a DFA M_4 such that $L(M_4) = L_1 \cup L_2$.
- 3.2. Construct a regular expression e such that

$$L(e) = L = \{w \in \Sigma^* \mid `abba' \text{ does not occur in } w\}.$$

We do this in several steps

- 1. First find an NFA M such that its language is \bar{L} .
- 2. Then construct a DFA M' accepting the same language.
- 3. Modify M' to obtain M'' accepting L.
- 4. Find e such that L(e) = L(M'').
- 3.3. Assume that L over Σ is regular.
 - 1. Show that $L_1 := \{ w \in \Sigma^* \mid \exists v \in L(w \text{ is an initial segment of } v) \}$ is regular.
 - 2. (*) Show that $L_2 := \{ w \in \Sigma^* \mid \exists v \in L(w \text{ is contained in } v) \}$ is regular

NB w is an initial segment of v if v=wu for some u; w is contained in v if all the symbols of w occur in v in that order, to be precise: $v=s_1\dots s_n$ and $w=s_{i_1}\dots s_{i_m}$ for some sequence $1\leq i_1<\dots< i_m\leq n.$ $(s_j\in\Sigma.)$