Formal Languages, Grammars and Automata

May 24, 2013

Herman Geuvers

4. Non-regular languages and the pumping lemma

Exercise 4.3 can be made and handed in, $\left(^{*}\right)$ is an extra exercise. Let $\Sigma=\{a, b\}$.
4.1. 1. Construct a DFA that accepts L where $L=L\left(b^{*} a a^{*} b b^{*}\left(a a^{*} b b^{*} a a^{*} b\right)^{*}\right)$
2. Derive (just like in the pumping lemma) from your automaton a number k, for which you can prove:
for every $w \in L$ with $|w| \geq k$, there are words u_{1}, v, u_{2} such that

- $w=u_{1} v u_{2}$ and
- $|v| \geq 1$,
- $\left|u_{1} v\right| \leq k$
- $\forall n \in \mathbb{N}\left(u_{1} v^{n} u_{2} \in L\right)$.

Prove this.
4.2. 1. Prove that the language L_{1} is not regular, where

$$
L_{1}:=\left\{a^{n} b^{p} \mid p>n\right\}
$$

2. Prove that the language L_{2} is not regular, where

$$
L_{2}:=\left\{a^{p} b^{n} \mid p>n\right\}
$$

Try to give a proof without using the pumping lemma.
4.3. Now, $\Sigma=\{0,1,2,3,4,5,6,7,8,9,+, \times,()$,$\} Prove that the language L_{3}$ is not regular, where

$$
L_{3}:=\left\{e \in \Sigma^{*} \mid e \text { is a well-formed arithmetical expression }\right\}
$$

NB. In a well-formed arithmetical expression the brackets should "match", so $3 \times(5+(3+0))$ is well-formed and so is $((((4+5) \times 7)))$, but $5+9)+3)$ and $(4 \times(3 \times 7)$ are not.
4.4. (*) Do Exercise 5.4.2. from the Lecture Notes of Fiore (see the webpage of the course).

