Exercises week 7

Languages and Automata

June 14, 2013

7. Pushdown automata and context-free languages

Exercise 7.2 can be handed in. 7.1. Let M be the PDA with

$Q = \{q_0, q_1, q_2\}$	$\delta(q_0, a, \lambda) = \{[q_0, A]\}$
$\Sigma = \{a, b\}$	$\delta(q_0, \lambda, \lambda) = \{[q_1, \lambda]\}\$
$\Gamma = \{A\}$	$\delta(q_0, b, A) = \{[q_2, \lambda]\}$
$F = \{q_1, q_2\}$	$\delta(q_1, \lambda, A) = \{[q_1, \lambda]\}$
	$\delta(q_2, b, A) = \{[q_2, \lambda]\}$
	$\delta(q_2, \lambda, A) = \{ [q_2, \lambda] \}$

- (i) Draw a state diagram for M.
- (ii) Show that $aabb \in L(M)$ and $aaab \in L(M)$.
- (iii) Verify whether aba, abb and aab are in L(M).
- (iv) Describe the language accepted by M.
- 7.2. Construct a PDA that accepts the language $L \subseteq \{a, b\}^*$, where

 $L = \{ w \mid \#_a(w) = \#_b(w) \}.$

(So the number of a's equals the number of b's in w.)

7.3. Given is the grammar G_1 over $\Sigma = \{a, b, c\}$:

$$\begin{array}{rcl} S & \rightarrow & aAD \\ A & \rightarrow & aAD \mid a \\ D & \rightarrow & bC \\ C & \rightarrow & c \end{array}$$

- (i) Construct a PDA accepting $L(G_1)$.
- (ii) Describe the language $L(G_1)$.
- 7.4. (Harder) Show that the class of context-free langauges is not closed under intersection.

(Hint: use that the language $L = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free and devise two context-free languages L_1, L_2 such that $L = L_1 \cap L_2$.)