RADBOUD UNIVERSITY NIJMEGEN

Test Formal Languages, Grammars and Automata, NWI-MOL090
May 31, 2013, 14.40 - 15.30, HG 00.304
This test consists of 4 exercises +1 bonus exercise. The maximum number of points per question is given in the margin. (The grade is obtained by dividing the number of points by 5 , rounding down to 10 if necessary.)

In this test, $\Sigma=\{a, b\}$.

1. Give a regular expression e such that $L(e)=L_{1}$, where

$$
\begin{equation*}
L_{1}=\left\{w \in \Sigma^{*} \mid w \text { contains } a b a \text { and } a b b a\right\} \tag{10}
\end{equation*}
$$

NB. Note that $a b a$ and $a b b a$ can overlap.
2. Give a DFA (deterministic finite automaton) that accepts the language L_{2} where

$$
L_{2}=\left\{w \in\{a, b, c, d\}^{*} \mid \text { all characters in } w \text { appear in alphabetic order }\right\} .
$$

So, $a b b c d \in L_{2}$ and $b c \in L_{2}$, but $a b a d \notin L_{2}$ and $d b \notin L_{2}$.
3. Consider the following NFA (non-deteministic finite automaton) M

(a) Indicate for each of the following words whether they are accepted by M : $a b b a, a b a b a, a b a b$.
(b) Is it true that $L\left(a b(a b)^{*}\right) \subseteq L(M)$? Explain your answer. (So, the question is to verify whether all words in $L\left(a b(a b)^{*}\right)$ are also in $L(M)$.)
(c) Construct a DFA M^{\prime} that accepts the same language as M. (Use the "powerset construction" that was used in the lecture.)

Continue on other side

4. Prove that the following language L_{4} is not regular.

$$
L_{4}=\left\{w w \mid w \in \Sigma^{*}\right\}
$$

So, a word is in L_{4} if it consists of two copies of the same word. For example, aabaab $\in L_{4}$, babaababaa $\in L_{4}$, but abaa $\notin L_{4}$, aaaaa $\notin L_{4}$.
5. [Bonus] We define the function $\mathrm{F}:\{a, b\}^{*} \rightarrow\{a, b, c\}^{*}$ that puts a c behind every b in a word. For example, $\mathrm{F}(a b a b)=a b c a b c, \mathrm{~F}(a b b a)=a b c b c a$ and $\mathrm{F}(a a a)=a a a$. The function F extends to languages in the obvious way: if $L \subseteq\{a, b\}^{*}$, then $\mathrm{F}(L)=\{\mathrm{F}(w) \mid w \in L\}$
Show that the following holds.

$$
\text { If } L \text { is regular, then } \mathrm{F}(L) \text { is regular. }
$$

