# Solution to some exercises week 3 

## Languages and Automata

May 17, 2013

## 3. Regular languages, Finite Automata

Let $\Sigma=\{a, b\}$.
3.1. 1. Construct a DFA $M_{1}$ such that

$$
L(M)=L_{1}=\left\{w \in \Sigma^{*} \mid \#_{a}(w) \text { is divisable by } 3\right\} .
$$



Answer, see figure.
After reading a word, any $b$ doesn't change the state. Reading an 'a' increases modulo 3 the state by 1 . Hence $q_{i}$ indicates that the number of $a$ 's mod 3 is $i$. Therefore $q_{0}$ should be the beginning and final state.
2. Construct an $M_{2}$ such that

$$
L(M)=L_{2}=\left\{w \in \Sigma^{*} \mid \#_{b}(w) \text { is divisable by } 2\right\} .
$$

Answer, see figure.

3. Construct a $\mathrm{NFA}_{\lambda} M_{3}$ such that $L\left(M_{3}\right)=L_{1} \cup L_{2}$. Answer, see
figure

4. Construct a DFA $M_{4}$ such that $L\left(M_{4}\right)=L_{1} \cup L_{2}$. We now have to find a deterministic version of the last $\mathrm{NFL}_{\lambda}$. By the method in the
lectures this is


