Radboud University Nijmegen ¢

Complexity IBC028, Lecture 1

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2024

H. Geuvers Version: spring 2024 Complexity 1/34

Radboud University Nijmegen

QOutline

Organisation and Overview

Induction proofs

Substitution Method

H. Geuvers Version: spring 2024 Complexity 2 /34

Organisation and Overview

Radboud University Nijmegen

About this course |

Lectures

® Teacher: Herman Geuvers

e Weekly, 2 hours, on Monday, 13:30-15:15 (with an exception
today)
® The lectures follow:

® these slides, available via the web

® extra lecture notes by Hans Zantema, available via the web

® Introduction to Algorithms, "CLRS", by Cormen, Leiserson,
Rivest and Stein
OR Algorithms llluminated Omnibus Edition, "Roughgarden”,
by Tim Roughgarden.

® Course URL:

www.cs.ru.nl/~herman/onderwijs/complexity2024/

Please check there first

H. Geuvers Version: spring 2024 Complexity 4 /34

www.cs.ru.nl/~herman/onderwijs/complexity2024/

Organisation and Overview

Radboud University Nijmegen

About this course Il

Exercises

® Weekly exercise classes, on Friday, 10:30-12:15 (or Friday
13:30-15:15, for Double Bachelor Math-CS)

® First exercise: register for an exercise class in Brightspace.
® Schedule:

® Monday: “lecture n” and “exercises n” on the web

® Next exercise class (Friday) you can work on “exercises n", ask
questions, get answers for “exercises n — 1".

® Next Monday, before 13:30: hand in “exercises n" via
Brightspace.

® Before next exercise class: find you grade for “exercises n" in
Brightspace

® Your handed in exercises are graded by your TA.

® If e is the average grade of your exercises, {5 is added to your

exam grade as a bonus.

H. Geuvers Version: spring 2024 Complexity

Organisation and Overview

Radboud University Nijmege

About this course IV

Examination

® The final grade is composed of

® the grade of your final (3hrs) exam, f,
® the average grade of your exercises, e,

® The final grade is computed as follows.
® If f is 5 or higher, the final grade is min(10,f +)
® |f f is below 5, the final grade is f.

® The re-exam is a full 3hrs exam about the whole course. You
keep the (average) grade of the exercises.

® |f you fail again, you must start all over next year

H. Geuvers Version: spring 2024 Complexity 6 /34

Organisation and Overview

Radboud University Nijmegen

Overview

® Techniques for computing the complexity of algorithms,
especially recursive algorithms; substitution method, recursion
tree method, the “master theorem” .

® Examples of algorithms and data structures and their
complexity.

® Complexity classes: P (polynomial complexity), NP;

NP-completeness and PZ NP?

Important:
= Precise formal definitions and precise formal proofs

H. Geuvers Version: spring 2024 Complexity 7 /34

Organisation and Overview

Radboud University Nijmegen

Complexity of algorithms

Time complexity of algorithm A := # steps it takes to execute A.
® what is a “step”?
® algorithm ... not “program”!
® 4 steps should be related to size of input

Time complexity of algorithm A is f if

for an input of size n, A takes f(n) steps to compute the output.
Here, f is a function from N to N.

® We study worst case complexity: we want an upperboud that
applies to all possible inputs.

® We study complexity “in the limit" and ignore a finite number
of “outliers”: asymptotic complexity

® We ignore constants and lower factors: n® and 5n® +3n+7
are “the same” complexity.

H. Geuvers Version: spring 2024 Complexity 8 /34

Organisation and Overview

Radboud University Nijmegen

Asymptotic complexity

Complexity definitions: “big O", “big ", "big ©" notation.
For f,g : N — N a functions,

e feO(g)if 3c € RuoINg Vn > No(f(n) < cg(n))

e feQg)if 3c € Ry 3INgVn > No(cg(n) < f(n))
feo(g)iffeO(g)NQg).

® O(g) is a set of functions (and similarly for (g) and ©(g)):

O(g) = {f | 3c € Ruo INo Vn > No(f(n) < cg(n))}

Nevertheless, one always writes f = O(g), and we will follow
that (abuse of) notation.

Also: we follow the habit of writing f(n) for the function
n— f(n), so we write f(n) = O(g(n)) etc.

H. Geuvers Version: spring 2024 Complexity 9 /34

Organisation and Overview

Radboud University Nijmegen i

f(n) = O(g(n))

f(n) = O(g(n)) if
dc € RuoINgVn > No(f(n) < cg(n))

H. Geuvers Version: spring 2024 Complexity 10 / 34

Organisation and Overview

Radboud University Nijmegen i

f(n) = Q(g(n))

f(n) = Q(g(n)) if

dc € Ry INgVn > No(c g(n) < f(n))

NO

H. Geuvers Version: spring 2024 Complexity

11/ 34

Organisation and Overview

Radboud University Nijmegen i

f(n) = O(g(n))

f(n) = ©(g(n)) if £(n) = O(g(n)) A f(n) = Q(g(n)).
This is equivalent to saying:

Jep, 2 € RugINgVn > No(cp g(n) < f(n) < c2g(n))

NO

H. Geuvers Version: spring 2024 Complexity 12 / 34

Organisation and Overview

Radboud University Nijmege

Why can we ignore constants and lower factors

For f(n) = axn® 4+ a_1n*~1 4 ... 4+ ap with ax # 0, we have

We show this by an example: 7n? + 5n + 8 = ©(n?)

H. Geuvers Version: spring 2024 Complexity

13 / 34

Organisation and Overview

Radboud University Nijmegen

Space complexity

Apart from running time as a measure of complexity, one could
also look at memory consumption. This is called space

complexity’: memory it takes to execute an algorithm. In the final
lectures we will say something about space complexity, but for now
we restrict to time complexity. Just one observation:

space complexity < time complexity, because it takes at least n
time steps to use n memory cells.

H. Geuvers Version: spring 2024 Complexity 14 / 34

Induction proofs

Radboud University Nijmegen i

Strong induction (I)

The induction principle that we have used is also called structural
induction: it relies directly on the inductive structure of N.

P(0) Vn e N(P(n) = P(n+1))
Vn € N(P(n))

We will often use strong induction, which relies on the fact that <
is well-founded on N. (No infinite decreasing <-sequences in N.)

Strong induction:
Vn e N(Vk < n(P(k)) — P(n)
Vn € N(P(n))

Strong induction gives a stronger induction hypothesis: to prove
P(n) we may assume as (IH): Yk < n(P(k)) (and not just
P(n—1)).

H. Geuvers Version: spring 2024 Complexity 16 / 34

Induction proofs

Radboud University Nijmege

Strong induction (II)

Strong induction:

Vn € N(vk < n(P(k)) = P(n)
Vn € N(P(n))

Strong induction is only seemingly stronger: in fact the two
reasoning principles are equivalent.

Strong induction can be proved by proving Vk < n(P(k)) by
(structural) induction on n.

H. Geuvers Version: spring 2024 Complexity 17 / 34

Induction proofs Radboud University Nijmegen ¢

Fibonacci (1)

The Fibonacci function is defined as follows.
fib(0) = 0 fib(l) = 1
fib(n+2) = fib(n+ 1)+ fib(n) (1)

Claim: fib is exponential.
® So we are looking for an a such that fib(n) = ©(a").
® Let's first try to find an a such that fib(n) = a".
Looking at equation (1), a should satisfy

an+2 — anJrl + "

Knowing that a # 0, we obtain the quadratic equation a®> = a + 1
that we can easily solve. Its solutions are called ¢ and ¢:
1++5 . 1—4/5

~ 1.618 :
2 L4 2

~ —0.618

H. Geuvers Version: spring 2024 Complexity 18 / 34

Induction proofs Radboud University Nijmege

Fibonacci (1)
fib0) = 0 fib(l) = 1
fib(n+2) = fib(n+ 1)+ fib(n) (1)
oot +2ﬁ ~ 1.618 5=t _2\/5 ~ —0.618

Neither ¢" nor ¢" provide solutions to the equations for fib, but
® the sum of two solutions to (1) is again a solution to (1)
® a solution to (1) multiplied with a c is again a solution to (1)

So we try to find ¢; and ¢ such that fib(n) = c;0" + c2@". This
yields a unique solution and we obtain

1 1
fib(n) = gx/ﬁ " — gx/ﬁ o

As $" — 0, we can conclude that fib(n) = ©(y").

H. Geuvers Version: spring 2024 Complexity

19 / 34

Induction proofs Radboud University Nijmegen

Binary search trees

A binary search tree, bst, is a binary tree that has, in its nodes and
leaves, elements of an ordered structure (A, C), where for every
node labeled a with left subtree ¢ and rightsubtree r,

e for all labels x in ¢: xC a
e for all labels y in r: aC y.

Often we have (N, <) as ordered structure.

® A bst is an efficient data-structure for storing search data if
the tree is balanced: searching in a tree t is efficient if the
height t is O(log k) for k the number of nodes in t.

® |n a previous lecture you have seen red-black trees.

® We now introduce AVL-trees, also because they give a nice
application of the fib function.

H. Geuvers Version: spring 2024 Complexity 20 / 34

Induction proofs Radboud University Nijmegen ¢

AVL trees

DEFINITION

An AVL tree is a binary search tree in which, for every node a, the
difference between the height of the left and the right subtree of a
is < 1.

The following Theorem shows that AVL trees are efficient.

THEOREM

The height of an AVL tree t with k nodes is O(log k).

The Theorem follows from our result that fib is exponential and a
Lemma.

LEMMA

The number of nodes in an AVL tree of height n is > fib(n).

H. Geuvers Version: spring 2024 Complexity 21/ 34

Induction proofs Radboud University Nijmege

The number of nodes in an AVL tree

LEMMA

The number of nodes in an AVL tree of height n is > fib(n).

Proof. By (strong) induction on n.

IH: for all p < n: if t is an AVL tree of height p, then the number of
nodes in t is > fib(p).

To prove: if n is the height of an AVL tree s, then the number of nodes
in s is > fib(n).

Case distinction on n:

® n=0,1. Easy; check for yourself.

® n>2 Then n= 1+ max(height(s1), height(sy)), where s; and s,
are the left and right subtrees of the top node of s. One of s; has
height(s;) = n — 1, while the other has height n — 1 or n — 2.

Using (IH) we derive that the number of nodes in s is
> 1+ fib(n — 1) + fib(n — 2), which is > fib(n). ()

H. Geuvers Version: spring 2024 Complexity 22 / 34

Induction proofs Radboud University Nijmegen ¢

AVL trees are efficient

THEOREM

The height of an AVL tree t with k nodes is O(log k).

Proof

Let d(k) := the largest height of an AVL tree with k nodes. So for
every k there is an AVL tree with k nodes that has height d(k).
Following the Lemma and our earlier result on fib: thereisa ¢ >0
such that: k > cp(%) for all k (larger than some fixed Np).
Therefore: log k > log(cp?(k)) = log ¢ 4 d(k) log ¢ and so

log k — log ¢
dlk) < = = O(log k
(1) < 2525 = 0(1og k)

H. Geuvers Version: spring 2024 Complexity 23 /34

Radboud University Nijmege

Substitution Method

Divide and Conquer algorithms: Mergesort

For A an array p, r numbers, MergeSort(A, p, r) sorts the part
Alp], ... A[r] and leaves the rest of A unchanged.

2
MergeSort(A, p, q);
MergeSort(A, g + 1, r);
Merge(A, p, q,r)

MergeSort(A, p,r) = if p < r then i {p =+ rJ ;

® Merge(A, p, q, r) merges the parts A[p], ... A[qg] and
Alg+1],... A[r]. Itis linear (in the length of A) and produces

a sorted array (if the input arrays are sorted).
® We write a recurrence relation for T(n), the time it takes to
compute MergeSort(A, p, r), with n=r —p

H. Geuvers Version: spring 2024 Complexity

Radboud University Nijmege

Substitution Method

Mergesort

For A an array p, r numbers, MergeSort(A, p, r) sorts the part
A[p], ... A[r] and leaves the rest of A unchanged.

MergeSort(A, p,r) = if p < r then q:= {p i rJ ;

2
MergeSort(A, p, q);
MergeSort(A, g + 1, r);

Merge(A, p, g,)
Recurrence equation for T of MergeSort
T(1) =1
n n
() = T(|3)+T7(3])+ewm

How can we solve this and compute T7?

H. Geuvers Version: spring 2024 Complexity

Radboud University Nijmege

Substitution Method

The complexity of Mergesort (1)

MergeSort(A,p,r) =ifp<r then gq:= VJTHJ ; MergeSort(A, p, q);

MergeSort(A, g + 1, r); Merge(A, p, q, r)

In computing complexity, we find that we can ignore rounding,
so we have

e T(1)=1
® T(n)=2T(35)+©O(n) (for n>2)

THEOREM

If T(n) <2T([5])+ ©(n), then

T(n) = O(nlog n).

H. Geuvers Version: spring 2024 Complexity 27 / 34

Radboud University Nijmege

Substitution Method

The complexity of Mergesort(Il)

THEOREM

If T(n) <2T(|2])+©(n), then T(n) = O(nlog n).

Proof (by strong induction)

We know that there are ¢g > 0 and Ny such that

¥n > No(T(n) <2T(|2]) + con).

Need to find: ¢; > 0 and N such that Vn > Ny(T(n) < ¢, nlog n).
Take ¢; > ¢ large enough so that T(n) < cynlogn for n=1,2,3.
Let Ny > 3, No. Then for n > N; we have |5 | < n, so we can apply
strong induction.

n IH n n
T(n) < 2T(L§J) +con < 2q bJ log bJ + con
< 2c ﬁlo ﬁJr
= 12 g2 an
< an(logn—1)+cn

cinlogn]

H. Geuvers Version: spring 2024 Complexity

Radboud University Nijmegen

Substitution Method

Back to Mergesort

For MergeSort, we had T(n) = T(|5])+ T([5]) + ©(n).
What if, in fact, we “round up” and have

T(n) =2T(|]) + ©(n)?

We show that it doesn't matter: If T(n) <2T(|5|+ D)+ cn, for
fixed D and ¢, then T(n) = O(nlogn).

Define U(n) := T(n+2D). Then

U(n) = T(n+2D) < 2T(V+22DJ + D) + c(n+ 2D)
< 2U([gJ)+2cn (for n > 2D)

Earlier Theorem: U(n) = O(nlogn). So we also have
T(n) = O(nlog n).

O

H. Geuvers Version: spring 2024 Complexity

Radboud University Nijmegen ¢

Substitution Method

Substitution method: Induction loading

T(n) = T(EJH T(Ebﬂ for n>2, and T(1) = b
We guess that T(n) = O(n) and we try to show that T(n) < cn
for some appropriately chosen ¢ (and n > N for some chosen N).

<
T(n) < Mﬂuﬂ
7?7
= ¢n+1 <cn ... nol

The trick is to add some constant: T(n) < cn+d.
Try the proof again and figure out what ¢ and d could be.
<
T(n) < c|3|+d+c|5|+d+1
cn+2d+1
< en+d for d = —1 and any c.

For the base case: T(1) =b<c—1, sotake c:= b+ 1.
We have T(n) < (b+1)n—1forall n>1,so T(n) € O(n).

H. Geuvers Version: spring 2024 Complexity 30/ 34

Radboud University Nijmegen i

Substitution Method

Substitution method: Changing variables

T(n)=2T(|vn])+logn
We rename variables and put n = 2™ (and so m = log n). Ignoring
rounding off errors, we have

T(2™) =2T(2™?) + m
Consider this as a function in m: S(m) = T(2™) and we have
S(m) = 25(%) +m

This is well-known and we have S(m) = O(mlog m).
We conclude that

T(n)=T(2") = S(m) < c(mlog m) = c(log nlog log n)

for some c.
So T(n) = O(log nloglog n).
H. Geuvers Version: spring 2024 Complexity

31/ 34

Radboud University Nijmegen i

Substitution Method

Pitfalls in proving complexity

Suppose T(1)=1and T(n)=T(n—1)+ nfor n> 1.
Claim: then T(n) = O(n)
Proof: By induction on n:

T(n)

T(n—1)+n
O(n)+ O(n) = O(n)

— This is WRONG! We need to be precise about functions and
constants in induction proofs:

T(n) = O(n) means: 3cINgVn > No (T(n) < cn)

Correct reasoning:

Iz

T(n) = T(n—1)+n
< ¢(n=1)+n (for n > Np)
= cn+n—c £ ¢cn

and the induction proof doesn’t go through.

H. Geuvers Version: spring 2024 Complexity 32 /34

Radboud University Nijmegen i

Substitution Method

Substitution method: Example
Given T(n) =9T(%)+ ©(n?), prove that T(n) = O(n*y/n).

H. Geuvers Version: spring 2024 Complexity 33 /34

Radboud University Nijmege

Substitution Method

Some final advice

® Make sure you can do induction proofs. See the exercises.

® Make sure you know how to compute with log, exponents
etcetera. That means: you don't have to look up the “rules”
but you know them by heart and you can apply them swiftly
and correctly. (See e.g. Section 3.2 of the CLRS book.)

® Make sure you know how to compute with summations. (See
e.g. Appendix A.1 of the CLRS book.)

H. Geuvers Version: spring 2024 Complexity 34 /34

	Organisation and Overview
	Induction proofs
	Substitution Method

