
Complexity Resit Exam
with solutions

July 13, 2022

This exam consists of four problems. Put your answers on the lined paper.
Your solutions are judged not only on correctness, but also clarity. Good luck!

Grading. Let p ∈ {0, 1, . . . , 100} denote the number of points earned. Then the
’raw’ grade b ∈ [1, 10] for this exam is b = 1.25 + p · 8.75/100. The actual,
rounded grade g including the bonus for the weekly assignments is computed
as follows.

Letting a ∈ [0, 10] denote the average of the six weekly assignments,
we have g = round(b′), where

b′ =

{
min(10, b + a/10) if b > 5

b if b ≤ 5

and round(b′) is the number (or the greatest of the two numbers) in
{1.0, 1.5, . . . , 9.5, 10.0 }\{5.5} nearest to b′.

Problem 1 (20 points)

1. Two students are quibbling over the complexity of integer multiplication:
the one says it’s O(n2), while the other claims it’s O(nlog2(3)). Who is
right?

Solution. They are both right, because integer multiplication can be per-
formed in O(nlog2(3)) time (using Karatsuba’s algorithm), and thus in
O(n2) time too.

Common errors:

(a) Claiming only one of the two students is correct (perhaps by either
forgetting the existence of Karatsuba’s algorithm, or by overlooking
the difference between Θ and O.)

(b) Offering no explanation.

(c) Drawing no conclusion (but, for example, only mentioning the com-
plexity classes of the standard and Karatsuba’s algorithm.)

1



2. Suppose you are consulted by a company that wishes to improve an al-
gorithm operating on large datasets that currently has running time

T (n) = 2T (d5/8 · ne) + 256n. (1)

After some consideration, you find two mutually exclusive methods, “A”
and “B”, to improve the algorithm’s runtime:

A. reduces the factor 256 in (1) to 32.

B. reduces the factor 5/8 in (1) to 3/8.

Which method yields the best asymptotic runtime? Which method will
you pursue?

Solution. Writing TA and TB for the runtime after application of “A” and
“B”, respectively, we have TA(n) = Θ(nlog8/5(2)) and TB(b) = Θ(n), by
cases I and III of the Master Theorem, respectively, because log8/3(2) <
log2(2) ≡ 1 < log8/5(2).

Whence method B yields the best asymptotic runtime.

Given the limited information here I would pursue method B, because
for large enough inputs method B will be faster than method A, (and
there is no indication that ‘large datasets’ would not be able to reach this
cross-over point.)

Common errors:

(a) Claiming that A has the better asymptotic complexity.

(b) Informal reasoning (about e.g. the ‘number of steps’.)

(c) Missing explanation.

(d) Computing TA and TB , but drawing no conclusion.

(e) Unclear use of the Master Theorem. (The details matter: if meth-
ods A and B would both have fallen in case III, then A would have
been the better choice.)

3. Is the variation on SAT, where the formulae are built from variables using
the logical connectives ∧ and ∨ (but not ¬) NP-complete? Briefly explain
why.

Solution. This variation of SAT is in P (because a formula built from just
variables and the binary logical connectives ∧ and ∨ is always satisfiable,
by assigning true to all variables,) and thus NP-complete iff NP = P.

(If we interpret ∧ and ∨ not necessarily as binary operations, and thus
our formulae may include false, 0, being the empty conjunction, then no

2



longer are all formulae satisfiable, but whether one is can still be com-
puted in polynomial time, as follows. Note that if a formula is satisfiable
with some assignment of truth values to variables, then changing all as-
signments to true does not alter the truth value of the formula — ∧ and ∨
unlike ¬ are ‘monotone’ — and thus a formula is satisfiable iff it is by
the assignment of true to all its variables. Checking this can be done in
polynomial time, as we already know from the proof that SAT is in NP.)

Common errors:

(a) Claiming that the problem is NP-complete (without proving that
NP = P.)

(b) Incorrect explanation.

4. Many problems can be encoded as integer linear programs, such as find-
ing the maximum flow in a flow network. Someone claims that this
means that we have a reduction from integer linear programming to
the max-flow problem, and that therefore the max-flow problem is NP-
complete. Are they correct?

Solution. No, their reasoning is incorrect, because that a problem A re-
duces to an NP-complete problem does not imply that A is NP-complete
as well, only that A is in NP.

Common errors:

(a) Confusing the direction of the reduction, and as a result claiming,
for example, that max-flow is NP-hard.

(b) Claiming that NP is not shown to be in NP.

(c) No or insufficient explanation.

Grading. 5 points per part.

Problem 2 (30 points) Write down a concrete asymptotic solution — for ex-
ample, T (n) = Θ(n lg(n)) — for each of the following recurrence relations.

1. T (n) = 25T (dn/5e) + n3 for n ≥ 2

2. T (n) = 125T (dn/5e) + n3 for n ≥ 2

3. T (n) = 625T (dn/5e) + n3 for n ≥ 2

4. T (n) = 9T (dn/3e+ 2) + n for n ≥ 5

5. T (n) = T (dn/2e) + 3T (bn/7c) + n for n ≥ 2

6. T (n) =
∑∞

k=1 T (
⌊
n/3k

⌋
) for n ≥ 3, and T (0) = 0

3



(You may assume that T (n) > 0 for all n > 0.)

Solution. 1. Note that log5(25) = 2 < 3, so we get T (n) = Θ(n3), by case III
of the Master Theorem. (We have already seen that n3 obeys the regular-
ity condition, for example, in exercise 2 of exercise set #2.)

Common error: not mentioning regularity.

2. Since log5(125) = 3, we get T (n) = Θ(n3 log(n)), by case II of the Master
Theorem.

3. T (n) = Θ(n4), by case I of the Master Theorem since log5(625) = 4 > 3.

Common errors for 1–3:

(a) Not noting the case of the Master Theorem or the value of logb(a).

4. Defining S : N→ R by S(n) = T (n + 3) for all n ∈ N, we get

S(n) = T (n + 3)

= 9T (d(n + 3)/3e+ 2) + n + 3

= 9T (dn/3 + 1e+ 2) + n + 3

= 9T (dn/3e+ 1 + 2) + n + 3

= 9S(dn/3e) + n + 3.

Whence S(n) = Θ(n2) by case I of the Master theorem since log3(9) =
2 > 1 and n + 3 = Ω(n). Thus T (n) = S(n− 3) = Θ((n− 3)2) = Θ(n2).

Common error: attempting to apply the Master Theorem directly to T ,
which is not possible.

5. We’ll show that T (n) = Θ(n) To begin, since T (n) ≥ n for all n ∈ N, we
have T (n) = Ω(n).

For the other direction, pick C ≥ 24 such that T (n) ≤ Cn for all n ∈
{1, . . . , 23} (such as C := max{ 24, T (1), T (2)/2, . . . , T (23)/23 }.) We’ll
prove that T (n) ≤ Cn for all n ≥ 1, by strong induction. So let n ∈ N with
T (m) ≤ Cm for all m < n with m ≥ 1 be given. If n = 0, there’s nothing
to prove. If 0 < n < 24, then T (n) ≤ Cn by choice of C. If n > 24, we
have:

T (n) = T (dn/2e) + 3T (bn/7c) + n since n ≥ 1

≤ C dn/2e + 3C bn/7c + n

by the I.H., which can be applied since 0 < dn/2e , bn/7c < n,

≤ C(n/2 + 1) + 3Cn/7 + n

since dn/2e ≤ n/2 + 1 and bn/7c ≤ n/7,

= Cn(13/14 + 1/n + 1/C)

≤ Cn,

because n ≥ 24 and C ≥ 24 entail that 1/n + 1/C ≤ 1/14. Whence
T (n) = O(n).

Common errors:

4



(a) Not dealing with the base cases correctly, or at all.

(b) Trying to apply the Master Theorem to T , which is not possible.

6. Note that for n ≥ 3 we have

T (n) =
∑∞

k=1 T (
⌊
n/3k

⌋
)

= T (bn/3c) +
∑∞

k=2 T (
⌊
n/3k

⌋
)

= T (bn/3c) +
∑∞

k=1 T (
⌊
(n/3)/3k

⌋
)

= T (bn/3c) +
∑∞

k=1 T (
⌊
bn/3c /3k

⌋
)

= T (bn/3c) + T (bn/3c)
= 2T (bn/3c),

and so T (n) = Θ(nlog3(2)) by case I of the Master Theorem.

Common error: claiming that T (n) = 0 for all n.

Common errors for 1–6:

1. Giving an asymptotic solutions without explanation.

2. Giving an asymptotic bound such asO(n2) instead of a concrete solution
(using Θ.)

Grading. 5 points per part.

Problem 3 (25 points) A subgraph of G is a graph G′ whose vertices and
edges are subsets of the vertices and edges of G respectively. We say that two
graphs G1 and G2 are isomorphic if there is a bijective function f : G1 → G2

such that we have an edge from x to y if and only if we have an edge from f(x)
to f(y).

1. Is G1 isomorphic to a subgraph of G2? And of G3?

G1 G2 G3

A

B

C

D

E

c d

b
e

a

u

w

y z

x

2. Show that the following problem, known as Subgraph, is NP-complete:

Given finite graphs G1 and G2, is G1 isomorphic to a subgraph
of G2?

5



Solution. Note that Subgraph is in NP. A certificate is a map between the two
graphs and we can check in polynomial time is an isomorphism to some sub-
graph of G2.

To show that Subgraph is NP-hard, we show that Ham reduces to this prob-
lem. Let G be a graph with n vertices. Define

• G2 = G

• G1 is the graph with vertices {1, . . . , n} and edges from i to i+1 for i < n.

Note that this can be construct in polynomial time relative to G.
Suppose, that G has a Hamiltonian path v1, . . . , vn. Note that this path gives

rise to a subgraph P of G. This subgraph is isomorphic to G: assign the vertex
1 to the vertex v1. This assignment is surjective, because it hits every vertex in
the Hamiltonian path. Since vertices are crossed precisely once in Hamiltonian
paths, this is also injective.

Now suppose that G1 is isomorphic to some subgraph of G. Denote this
isomorphism by f . Then the image of G1 under this isomorphism is a Hamil-
tonian path in G. Since f is injective and has n nodes, all nodes in G are in the
image. In addition, there must be an edge between all those nodes because of
how G1 was construct.

All in all, we can conclude that Ham ≤P Subgraph, and thus Subgraph is
NP-hard.

Grading. Points are given as follows

• 5 points are given for correctly identifying which graphs are isomorphic

• 5 points are given for the proof that it is NP.

• 5 points are given for the correct function for the reduction

• 5 points are given for proof that it is indeed a reduction

• 5 points are given for explaining why the reduction is polynomial

Problem 4 (25 points) In this problem, we look at coloring problems. More
specifically, we define the problem kColor for every natural number k to be:

Given a finite graph G, does G have a k-coloring?

If k = 3, then this is the problem 3Color which we discussed during the lectures.
(Note: in this exercise you may use the fact that 3Color is NP-complete.)

1. Is the problem 2Color in P? Briefly explain why.

2. Give a graph with 5 nodes and give a 4-coloring of that graph.

3. Show that for every k with k ≥ 3 the problem kColor is NP-complete.

6



Solution. We can determine whether a graph G has a 2-coloring using breadth
first search. Starting from an arbitrary vertex v in G, we perform breadth first
search starting at v. Nodes on an even layer get the color blue while nodes on
an odd layer get the color red. This algorithm runs in polynomial time, and
thus 2Color is in P.

Next we show that kColor is NP-complete. Note that kColor is in NP: the
certificate is just an assignment of colors to vertices. We can check in poly-
nomial time whether this actually is a coloring: we just look for every edge
whether the endpoints get the same color.

To show that kColor is NP-hard, we show that 3Color ≤P kColor. We show
two ways of doing that.
Approach 1: There are two cases: either k = 3 or k > 3. If k = 3, then we
are just looking at 3Color of which we already know that it’s NP-complete. If
k > 3, we can perform the following construction:

1. Start with a graph G

2. Let m = k − 3.

3. Add m new vertices v1, . . . , vm to G

4. Connect each vi to every other vertex in G (including the other vj)

5. This gives a graph G′

Note that a 3-coloring of G is the same as a k-coloring of G′. Also note that G′

can be constructed in polynomial time.
If we have a 3-coloring of G, then we obtain a k-coloring of G′ by assigning

every vi a unique color. Since we added k − 3 nodes, this is possible.
Suppose, that we have a k-coloring of G′. Each vi added to G′ gets a color

and because they are connected to every other vertex in G′, every vi gets a
different color. Since we added k − 3, there are 3 colors remaining for G, and
thus we have a 3-coloring of G.
Approach 2: Using induction, we prove that for all k we have kColor ≤P k +
1Color. From this, we can conclude that 3Color ≤P kColor for all k ≥ 3.

Let k be a natural number and let G be a graph. We construct a graph
G′ from G by adding a new vertex v and we connect that vertex with every
vertex in G. Note that G′ can be constructed in polynomial time from G. By
contraction, a coloring of G′ must assign the vertex v a different color than
every other vertex in G′.

If G has a k-coloring, then we obtain a (k + 1)-coloring of G′ by assigning
the vertex v the remaining color. If G′ has a (k + 1)-coloring, then we obtain a
k-coloring of G by leaving out the vertex v.

Grading. Points are given as follows

• 5 points are given for the proof that 2Color is in P

• 5 points are given for giving a graph that has 5 nodes and a 4-coloring.

• 5 points are given for the reason why kColor is in NP.

• 10 points are given for the correct reduction.

7


