
Exercises Complexity Theory
Lecture 1

April 7, 2025

Only the exercises where points are given can be handed in.
(The maximum number of points per exercise is written in the margin.)

To be handed in on April 14, 2025, in Brightspace under Assignment 1, deadline: 11:00 AM.

Exercise 1. We prove a number of standard useful properties about log. Suggestion: remember these.
First of all, here are some facts from which basically everything follows.

• By definition:
logb a = x ⇐⇒ bx = a

• Hence, the exponent and logarithm functions are inverses:

blogb a = a and logb ba = a.

• Hence, the exponent and logarithm functions are injective:

bx = by =⇒ x = y and logb x = logb y =⇒ x = y.

• The exponent and logarithm functions are strictly order-preserving:

x < y =⇒ bx < by and x < y =⇒ logb x < logb y.

Let a, b, c > 0.

(a) Prove the following:
loga b · logb c = loga c.

(Hint: consider ax for x the two sides of the equation.)

(b) From (a), show that one can “change the logarithm base at a constant cost factor”, by showing that

logb c = d loga c for some constant d > 0.

(c) Prove the following:
logb ac = c logb a.

(d) From (a) and (c), show that
alogc b = blogc a.

(Hint: take loga at both sides of this equation.)

(e) Suppose a > 1. Given d > 0, prove that

loga x + d > loga(x + d)

for sufficiently large x. When is x “sufficiently large”? (Note that this also implies loga(x − d) >
loga x − d. These inequalities are sometimes helpful in approximations to commute log with +.)

1



Exercise 2. Rank the following functions in n by order of growth from low to high; some may be of the
same order. We view f as being “lower than” g in case f = O(g) and g ̸= O(f).

n
√

n

n∑
i=0

log n nn log
√

n log(n2) (log n)2 2n 3n

⌊log n⌋∑
i=0

i

n∑
i=0

i2 n0.001 17n3 17log 89 n2 100n 1

Exercise 3. Prove that every n ≥ 1 is either a power of 2 or can be written as the sum of powers of 2
using strong induction.

Exercise 4. Let g be defined by g(0) = 0, g(1) = 5, g(2) = 3, and g(n + 3) = 2g(n + 2) + g(n + 1) − 2g(n)
for n ≥ 3.

(a)(10) Use the method of the lecture to derive a closed expression for g(n) (that is: express g(n) in terms
of n, without recursion).

(b)(10) Show that g is exponential by giving a such that g(n) = Θ(an).

Exercise 5. Let T (n) = 4T (⌊n/6⌋) + T (⌊n/3⌋) + d n, where d ≥ 0 d is some fixed constant.

(a)(20) Prove that T (n) = O (n log n), where you take rounding off errors into account.

(b) Prove that T (n) = Ω (n log n), where you take rounding off errors into account.

Exercise 6. Let T (n) = 10T (n

3 ) + Θ
(
n2)

. Prove the following using the Substitution Method (where
you may ignore rounding off errors).

(a) T (n) = O
(
n2√

n
)
, and

(b) T (n) = Ω
(
n2 log3 n

)
.

Exercise 7. Let T (n) = 3T (n − 1) + 4T (n − 2) + Θ
(
n3)

. Prove the following using the Substitution
Method (where you may ignore rounding off errors).

(a)(30) T (n) = O (4n). (Hint: you may need to add an additional term −dn3.)

(b)(30) T (n) = Ω (4n).

2


