Complexity IBC028, Lecture 1

H. Geuvers

Institute for Computing and Information Sciences Radboud University Nijmegen

Version: spring 2025

Outline

Organisation and Overview

Induction proofs

Substitution Method

About this course I

Lectures

- Teachers: Herman Geuvers, Niels van der Weide
- Weekly, 2 hours, on Monday, 13:30-15:15 (with an exception)
- The lectures follow:
 - these slides, available via the web
 - extra lecture notes by Hans Zantema, available via the web
 - Introduction to Algorithms, "CLRS", by Cormen, Leiserson, Rivest and Stein
 - **OR** Algorithms Illuminated Omnibus Edition, "Roughgarden", by Tim Roughgarden.
- Course URL:

www.cs.ru.nl/~herman/onderwijs/complexity2025/

Please check there first

About this course II

Exercises

- Weekly exercise classes, on Thursday, 8:30-10:15
- First exercise: register for an exercise class in Brightspace.
- Schedule:
 - Monday: "lecture n" and "exercises n" on the web
 - Next exercise class (Thursday) you can work on "exercises n", ask questions, get answers for "exercises n - 1".
 - Next Monday, before 11:00: hand in "exercises n" via Brightspace.
 - Before next exercise class: find you grade for "exercises n" in Brightspace
- Your handed in exercises are graded by your TA.
- If e is the average grade of your exercises, $\frac{e}{10}$ is added to your exam grade as a bonus.

About this course III

Examination

- The final grade is composed of
 - the grade of your final (3hrs) exam, f,
 - the average grade of your exercises, e,
- The final grade is computed as follows.
 - If **f** is 5 or higher, the final grade is $\min(10, \mathbf{f} + \frac{\mathbf{e}}{10})$
 - If **f** is below 5, the final grade is **f**.
- The resit exam is a full 3hrs exam about the whole course. You keep the (average) grade of the exercises.
- If you fail again, you must start all over next year

Topics

- Techniques for computing the complexity of algorithms, especially recursive algorithms; substitution method, recursion tree method, the "master theorem".
- Examples of algorithms and data structures and their complexity.
- Complexity classes: P (polynomial complexity), NP;
 NP-completeness and P[?] NP?

Important:

⇒ Precise formal definitions and precise formal proofs

Complexity of algorithms

Time complexity of algorithm A := # steps it takes to execute A.

- what is a "step"?
- algorithm ... not "program"!
- # steps should be related to size of input

Time complexity of algorithm A is f if

for an input of size n, A takes f(n) steps to compute the output.

Here, f is a function from \mathbb{N} to \mathbb{N} .

- We study worst case complexity: we want an upperboud that applies to all possible inputs.
- We study complexity "in the limit" and ignore a finite number of "outliers": asymptotic complexity
- Constants and lower factors can be ignored: n^2 and $5n^2 + 3n + 7$ are "the same" complexity.

Asymptotic complexity

Complexity definitions: "big O", "big Ω ", "big Θ " notation.

For $f, g : \mathbb{N} \to \mathbb{N}$ functions, we define

- $f \in \mathcal{O}(g)$ if $\exists c \in \mathbb{R}_{>0} \exists N_0 \, \forall n > N_0(f(n) \leq c \, g(n))$
- $f \in \Omega(g)$ if $\exists c \in \mathbb{R}_{>0} \exists N_0 \forall n > N_0(c g(n) \leq f(n))$
- $f \in \Theta(g)$ if $f \in \mathcal{O}(g) \cap \Omega(g)$.
- $\mathcal{O}(g)$ is a set of functions (and similarly for $\Omega(g)$ and $\Theta(g)$):

$$\mathcal{O}(g) = \{ f \mid \exists c \in \mathbb{R}_{>0} \,\exists N_0 \,\forall n > N_0(f(n) \leq c \,g(n)) \}$$

- Nevertheless, one always writes $f = \mathcal{O}(g)$, and we will follow that (abuse of) notation.
- Also: we follow the habit of writing f(n) for the function $n \mapsto f(n)$, so we write $f(n) = \mathcal{O}(g(n))$ etc.

H. Geuvers Version: spring 2025 Complexity 9 / 34

$$f(n) = \mathcal{O}(g(n))$$

$$f(n) = \mathcal{O}(g(n))$$
 if $\exists c \in \mathbb{R}_{>0} \, \exists N_0 \, orall n > N_0(f(n) \le c \, g(n))$

$$f(n) = \Omega(g(n))$$

$$f(n) = \Omega(g(n))$$
 if $\exists c \in \mathbb{R}_{>0} \, \exists N_0 \, orall n > N_0 (c \, g(n) \leq f(n))$

$$f(n) = \Theta(g(n))$$

$$f(n) = \Theta(g(n))$$
 if $f(n) = \mathcal{O}(g(n)) \wedge f(n) = \Omega(g(n))$. This is equivalent to saying:

$$\exists c_1, c_2 \in \mathbb{R}_{>0} \, \exists N_0 \, \forall n > N_0(c_1 \, g(n) \leq f(n) \leq c_2 \, g(n))$$

H. Geuvers Version: spring 2025 Complexity 12 / 34

Why can we ignore constants and lower factors

For
$$f(n)=a_kn^k+a_{k-1}n^{k-1}+\ldots+a_0$$
 with $a_k\neq 0$, we have
$$f(n)=\Theta(n^k)$$

We show this by an example: $7n^2 + 5n + 8 = \Theta(n^2)$

Space complexity

Apart from running time as a measure of complexity, one could also look at memory consumption. This is called space

complexity': memory it takes to execute an algorithm. In the final lectures we will say something about space complexity, but for now we restrict to time complexity.

Just one observation:

space complexity \leq time complexity, because it takes at least n time steps to use n memory cells.

Strong induction (I)

The induction principle that we have used is also called structural induction: it relies directly on the inductive structure of \mathbb{N} .

$$\frac{P(0)}{\forall n \in \mathbb{N} (P(n) \to P(n+1))}$$

We will often use strong induction, which relies on the fact that < is well-founded on \mathbb{N} . (No infinite decreasing <-sequences in \mathbb{N} .) Strong induction:

$$\frac{\forall n \in \mathbb{N} (\forall k < n (P(k) \to P(n)))}{\forall n \in \mathbb{N} (P(n))}$$

Strong induction gives a stronger induction hypothesis: to prove P(n) we may assume as (IH): $\forall k < n(P(k))$ (and not just P(n-1)).

Strong induction (II)

Strong induction:

$$\frac{\forall n \in \mathbb{N} (\forall k < n (P(k) \to P(n)))}{\forall n \in \mathbb{N} (P(n))}$$

Strong induction is only seemingly stronger: in fact the two reasoning principles are equivalent.

Strong induction can be proved by proving $\forall k < n(P(k))$ by (structural) induction on n.

The Fibonacci function is defined as follows.

$$fib(0) = 0$$
 $fib(1) = 1$
 $fib(n+2) = fib(n+1) + fib(n)$ (1)

Claim: fib is exponential.

- So we are looking for an a such that $fib(n) = \Theta(a^n)$.
- Let's first try to find an a such that $fib(n) = a^n$.

Looking at equation (1), a should satisfy

$$a^{n+2} = a^{n+1} + a^n$$
.

Knowing that $a \neq 0$, we obtain the quadratic equation $a^2 = a + 1$ that we can easily solve. Its solutions are called φ and $\hat{\varphi}$:

$$\varphi := \frac{1 + \sqrt{5}}{2} \approx 1.618$$
 $\hat{\varphi} := \frac{1 - \sqrt{5}}{2} \approx -0.618$

H. Geuvers Version: spring 2025 Complexity 18 / 34

Fibonacci (II)

$$fib(0) = 0 fib(1) = 1$$

$$fib(n+2) = fib(n+1) + fib(n) (1)$$

$$\varphi := \frac{1+\sqrt{5}}{2} \approx 1.618 \hat{\varphi} := \frac{1-\sqrt{5}}{2} \approx -0.618$$

Neither φ^n nor $\hat{\varphi}^n$ provide solutions to the equations for fib, but

- the sum of two solutions to (1) is again a solution to (1)
- ullet a solution to (1) multiplied with a c is again a solution to (1)

So we try to find c_1 and c_2 such that fib $(n) = c_1 \varphi^n + c_2 \hat{\varphi}^n$. This yields a unique solution and we obtain

$$\mathsf{fib}(n) = \frac{1}{5}\sqrt{5} \; \varphi^n - \frac{1}{5}\sqrt{5} \; \hat{\varphi}^n.$$

As $\hat{\varphi}^n \to 0$, we can conclude that $fib(n) = \Theta(\varphi^n)$.

H. Geuvers Version: spring 2025 Complexity 19 / 34

Binary search trees

A binary search tree, bst, is a binary tree that has, in its nodes and leaves, elements of an ordered structure (A, \sqsubseteq) , where for every node labeled a with left subtree ℓ and rightsubtree r,

- for all labels x in ℓ : $x \sqsubseteq a$
- for all labels y in r: $a \sqsubseteq y$.

Often we have (\mathbb{N}, \leq) as ordered structure.

- A bst t is an efficient data-structure for searching if the height of t is $\mathcal{O}(\log k)$, for k the number of nodes in t.
- In a previous lecture you have seen red-black trees.
- We now introduce AVL-trees, also because they give a nice application of the fib function.

AVL trees

DEFINITION

An AVL tree is a binary search tree in which, for every node a, the difference between the height of the left and the right subtree of a is ≤ 1 .

The following Theorem shows that AVL trees are efficient.

THEOREM

The height of an AVL tree t with k nodes is $\mathcal{O}(\log k)$.

The Theorem follows from our result that fib is exponential and a Lemma.

LEMMA

The number of nodes in an AVL tree of height n is \geq fib(n).

The number of nodes in an AVL tree

LEMMA

The number of nodes in an AVL tree of height n is \geq fib(n).

Proof. By (strong) induction on *n*.

IH: for all p < n: if t is an AVL tree of height p, then the number of nodes in t is \geq fib(p).

To prove: if n is the height of an AVL tree s, then the number of nodes in s is \geq fib(n).

Case distinction on n:

- n = 0, 1. Easy; check for yourself.
- $n \ge 2$. Then $n = 1 + \max(\text{height}(s_1), \text{height}(s_2))$, where s_1 and s_2 are the left and right subtrees of the top node of s. One of s_i has height $(s_i) = n 1$, while the other has height n 1 or n 2. Using (IH) we derive that the number of nodes in s is $\ge 1 + \text{fib}(n 1) + \text{fib}(n 2)$, which is $\ge \text{fib}(n)$.

AVL trees are efficient

${ m Theorem}$

The height of an AVL tree t with k nodes is $\mathcal{O}(\log k)$.

Proof

Let h(k) := the largest height of an AVL tree with k nodes. So for every k there is an AVL tree with k nodes that has height h(k). Following the Lemma and our earlier result on fib: there is a c > 0such that: $k > c\varphi^{h(k)}$ for all k (larger than some fixed N_0). Therefore: $\log k > \log(c\varphi^{h(k)}) = \log c + h(k)\log\varphi$ and so

$$h(k) \le \frac{\log k - \log c}{\log \varphi} = \mathcal{O}(\log k)$$

Version: spring 2025 Complexity 23 / 34

Divide and Conquer algorithms: Mergesort

For A an array p, r numbers, MergeSort(A, p, r) sorts the part $A[p], \dots A[r]$ and leaves the rest of A unchanged.

$$\label{eq:mergeSort} \mathsf{MergeSort}(A,p,r) = \mathtt{if} \ p < r-5 \ \mathtt{then} \qquad q := \left\lfloor \frac{p+r}{2} \right\rfloor; \\ \mathsf{MergeSort}(A,p,q); \\ \mathsf{MergeSort}(A,q+1,r); \\ \mathsf{Merge}(A,p,q,r) \\ \mathsf{else} \qquad \mathsf{InsertionSort}(A,p,r) \\ \end{cases}$$

- Merge(A, p, q, r) merges the parts $A[p], \dots A[q]$ and $A[q+1], \dots A[r]$. It is linear (in the length of A) and produces a sorted array (if the input arrays are sorted).
- We write a recurrence relation for T(n), the time it takes to compute MergeSort(A, p, r), with n = r p

H. Geuvers Version: spring 2025 Complexity 25 / 34

Mergesort

For A an array p, r numbers, MergeSort(A, p, r) sorts the part $A[p], \dots A[r]$ and leaves the rest of A unchanged.

$$\label{eq:mergeSort} \begin{split} \mathsf{MergeSort}(A,p,r) &= \mathsf{if} \ p < r - 5 \, \mathsf{then} & q := \left\lfloor \frac{p+r}{2} \right\rfloor; \\ & \mathsf{MergeSort}(A,p,q); \\ & \mathsf{MergeSort}(A,q+1,r); \\ & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{else} & \mathsf{InsertionSort}(A,p,r) \end{split}$$

Recurrence equation for T of MergeSort

$$\begin{array}{lcl} T(n) & \leq & t_{\text{base}} & \text{for } n \leq 5 \\ T(n) & = & T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + \Theta(n) & \text{for } n > 5 \end{array}$$

How can we solve this and compute T?

The complexity of Mergesort(I)

THEOREM

If
$$T(n) \le 2T(\left|\frac{n}{2}\right|) + \Theta(n)$$
, then $T(n) = \mathcal{O}(n \log n)$.

Proof (by strong induction)

We have $c_0>0$ and N_0 such that $\forall n>N_0(T(n)\leq 2T(\left\lfloor\frac{n}{2}\right\rfloor)+c_0\,n)$. Need to find: $c_1>0$ and N_1 such that $\forall n>N_1(T(n)\leq c_1\,n\log n)$. Take $c_1\geq c_0$ large enough so that $T(n)\leq c_1n\log n$ for $n=N_0,\ldots,2N_0$. Let $N_1>3$, N_0 . Then for $n>N_1$ we have $\left\lfloor\frac{n}{2}\right\rfloor< n$, so we can apply strong induction.

$$T(n) \le 2T(\left\lfloor \frac{n}{2} \right\rfloor) + c_0 n \stackrel{\mathsf{IH}}{\le} 2c_1 \left\lfloor \frac{n}{2} \right\rfloor \log \left\lfloor \frac{n}{2} \right\rfloor + c_0 n$$
$$\le 2c_1 \frac{n}{2} \log \frac{n}{2} + c_1 n$$
$$\le c_1 n (\log n - 1) + c_1 n$$
$$= c_1 n \log n$$

H. Geuvers Version: spring 2025 Complexity 27 / 34

Back to Mergesort I

For MergeSort, we had $T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + \Theta(n)$. What if, in fact, we "round up" and have

$$T(n) = 2T(\lceil \frac{n}{2} \rceil) + \Theta(n)$$
?

We show that it doesn't matter: If $T(n) \le 2T(\lfloor \frac{n}{2} \rfloor + D) + c n$, for fixed D and c, then $T(n) = \mathcal{O}(n \log n)$.

Define U(n) := T(n+2D). Then

$$U(n) = T(n+2D) \leq 2T(\left\lfloor \frac{n+2D}{2} \right\rfloor + D) + c(n+2D)$$

$$\leq 2T(\left\lfloor \frac{n}{2} \right\rfloor + 2D) + c(n+2D)$$

$$\leq 2U(\left\lfloor \frac{n}{2} \right\rfloor) + 2c n \qquad (for $n \geq 2D$)$$

Earlier Theorem: $U(n) = \mathcal{O}(n \log n)$. So we also have $T(n) = \mathcal{O}(n \log n)$.

Back to Mergesort II

For MergeSort, we had the following recurrence equation for T.

$$\begin{array}{lcl} T(n) & \leq & t_{\mathsf{base}} & \text{for } n \leq 5 \\ T(n) & = & T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + \Theta(n) & \text{for } n > 5 \end{array}$$

We observe

- The values for small inputs don't matter for the asymptotic complexity.
- In computing complexity, we can ignore rounding, so we just consider n > 2 and

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

H. Geuvers Version: spring 2025

29 / 34

Substitution method: Induction loading

$$T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + 1$$
 for $n \ge 2$, and $T(1) = b$

We guess that $T(n) = \mathcal{O}(n)$ and we try to show that $T(n) \leq c n$ for some appropriately chosen c (and n > N for some chosen N).

$$T(n) \le c \left\lfloor \frac{n}{2} \right\rfloor + c \left\lceil \frac{n}{2} \right\rceil + 1$$

= $cn + 1 \stackrel{??}{\le} cn \dots no!$

The trick is to add some constant: $T(n) \le c n + d$. Try the proof again and figure out what c and d could be.

$$T(n) \leq c \left\lfloor \frac{n}{2} \right\rfloor + d + c \left\lceil \frac{n}{2} \right\rceil + d + 1$$

$$= cn + 2d + 1$$

$$\leq cn + d \qquad \text{for } d = -1 \text{ and any } c.$$

For the base case: $T(1) = b \le c - 1$, so take c := b + 1.

We have $T(n) \le (b+1)n-1$ for all $n \ge 1$, so $T(n) \in \mathcal{O}(n)$.

Substitution method: Changing variables

$$T(n) = 2T(\lfloor \sqrt{n} \rfloor) + \log n$$

We rename variables and put $n = 2^m$ (and so $m = \log n$). Ignoring rounding off errors, we have

$$T(2^m) = 2T(2^{m/2}) + m$$

Consider this as a function in m: $S(m) = T(2^m)$ and we have

$$S(m)=2S(\frac{m}{2})+m$$

This is well-known and we have $S(m) = \mathcal{O}(m \log m)$. We conclude that

$$T(n) = T(2^m) = S(m) \le c(m \log m) = c(\log n \log \log n)$$

for some c.

So
$$T(n) = \mathcal{O}(\log n \log \log n)$$
.

H. Geuvers Version: spring 2025 Complexity 31 / 34

Pitfalls in proving complexity

Suppose
$$T(1) = 1$$
 and $T(n) = T(n-1) + n$ for $n > 1$.

Claim: then $T(n) = \mathcal{O}(n)$

Proof: By induction on *n*:

$$T(n) = T(n-1) + n$$

 $\stackrel{\text{IH}}{=} \mathcal{O}(n) + \mathcal{O}(n) = \mathcal{O}(n)$

⇒ This is WRONG! We need to be precise about functions and constants in induction proofs:

$$T(n) = \mathcal{O}(n)$$
 means: $\exists c \exists N_0 \forall n > N_0 (T(n) \le c n)$

Correct reasoning:

$$T(n) = T(n-1) + n$$

 $\leq c(n-1) + n$ (for $n > N_0$)
 $= c n + n - c \nleq cn$

and the induction proof doesn't go through.

Substitution method: Example

Given
$$T(n) = 9T(\frac{n}{2}) + \Theta(n^3)$$
, prove that $T(n) = \mathcal{O}(n^3\sqrt{n})$.

Some final advice

- Make sure you can do induction proofs. See the exercises.
- Make sure you know how to compute with log, exponents etcetera. That means: you don't have to look up the "rules" but you know them by heart and you can apply them swiftly and correctly. (See e.g. Section 3.2 of the CLRS book.)
- Make sure you know how to compute with summations. (See e.g. Appendix A.1 of the CLRS book.)