

Complexity IBC028, Lecture 2

H. Geuvers

Institute for Computing and Information Sciences
Radboud University Nijmegen

Version: spring 2025

Outline

Recursion tree method

The Master Theorem

Techniques to prove $T(n) = \mathcal{O}(g(n))$ [or $T(n) = \Omega(g(n))$ or $T(n) = \Theta(g(n))$]

There are basically three techniques

1 Substitution Method: For given g, Choose c > 0 (and N) and prove (by induction on n)

$$T(n) \le c g(n)$$
 (for all $n > N$)

- Recursion Tree method : Method to find g. And then you still have to prove g is correct using (1)
- Master theorem method : General theorem for patterns of the shape

$$T(n) = aT(\frac{n}{b}) + f(n).$$

Actually: casting the heuristic method of (2) into a general theorem.

H. Geuvers

Version: spring 2025

Complexity

Substitution method

Last week (MergeSort):

THEOREM

If
$$T(n) \leq 2T(\left|\frac{n}{2}\right|) + \Theta(n)$$
, then

$$T(n) \in \mathcal{O}(n \log n)$$
.

In fact, the $n \log n$ was an educated guess, which we then proved by induction.

But how do we make an "educated guess" ... how do we find the $n \log n$?

Answer: Make a recursion tree!

Recursion Tree method (I)

$$T(n) = 2T(\frac{n}{2}) + d n.$$

- The height is $\log n$, so there are $\log n + 1$ layers
- Per layer: *d n* cost contribution
- Bottom: #leaves = $2^{\log n} = n$; cost per leaf $\Theta(1)$.
- Total cost: $d n \log n + n \Theta(1)$
- So we conjecture: $T(n) = \Theta(n \log n)$

H. Geuvers Version: spring 2025 Complexity 6 / 18

Some computation rules with log

For exponent: $(b^x)^y = b^{x \cdot y}$ and $b^x b^y = b^{x+y}$.

By definition:

$$\log_b x = y \Longleftrightarrow b^y = x$$

and so
$$b^{\log_b x} = x$$

Rules for log

$$\begin{array}{rcl} \log_b(x \cdot y) &=& \log_b x + \log_b y & \log_b(x^k) &=& k \log_b x \\ \log_b(\frac{x}{y}) &=& \log_b x - \log_b y & \log_b(\frac{1}{x}) &=& -\log_b x \end{array}$$

Changing base:

$$\log_a x = \log_a b \cdot \log_b x$$

and so

$$\log_a f(n) = \log_a b \cdot \log_b f(n)$$

$$x^{\log_c y} = y^{\log_c x}$$

and so

$$x^{\log_c f(n)} = f(n)^{\log_c x}$$

Addition/substraction under log:

$$\log(x-1) \ge \log x - 1$$

$$\log(x-1) \ge \log x - 1 \qquad \log x + 1 \ge \log(x+1) \qquad \text{for } x \ge 2$$

Recursion Tree method (II)

Question. Given $T(n) = 3T(\left|\frac{n}{2}\right|) + n$, find f with $T(n) = \Theta(f(n))$.

- Height is $\log n$, so $3^{\log n} = n^{\log 3}$ leaves, contributing $\Theta(n^{\log 3})$
- At layer *i* we have $3^i \frac{n}{2^i}$ contribution.
- Total: $\sum_{i=0}^{\log n} (\frac{3}{2})^i n = n^{(\frac{3}{2})^{\log n+1}-1}_{\frac{3}{2}-1} \approx 2n(\frac{3}{2})^{\log n} = 2 \cdot 3^{\log n} = 2 \cdot n^{\log 3}.$
- So we conjecture: $T(n) = \Theta(n^{\log 3})$.

H. Geuvers Version: spring 2025 Complexity 8 / 18

Substitution method

$$T(n) = 3T(\lfloor \frac{n}{2} \rfloor) + n.$$

We prove: $T(n) = \mathcal{O}(n^{\log 3}).$

Proof. We need to prove $T(n) \le c n^{\log 3}$ for appropriately chosen c (for all n > N for some appropriately chosen N)

$$T(n) = 3T(\left\lfloor \frac{n}{2} \right\rfloor) + n$$

$$\stackrel{IH}{\leq} 3c(\frac{n}{2})^{\log 3} + n$$

$$= \frac{3c \, n^{\log 3}}{2^{\log 3}} + n = cn^{\log 3} + n \stackrel{??}{\leq} cn^{\log 3}$$

The induction fails, so we add a linear factor: $T(n) \le c n^{\log 3} + dn$. We notice that it works for d = -2, because we have

$$T(n) = 3T(\left|\frac{n}{2}\right|) + n \stackrel{IH}{\leq} 3(c(\frac{n}{2})^{\log 3} - 2\frac{n}{2}) + n = cn^{\log 3} - 3n + n = cn^{\log 3} - 2n$$

H. Geuvers Version: spring 2025 Complexity 9 / 18

Computing the median of an unsorted list

Problem: Given an unsorted list of elements, compute the median. (Median of A= element that has half of the elements of A below it and the other half above it.)

Possible solution:

- First sort the list A, with |A| = n.
- Then take the $\lfloor \frac{n}{2} \rfloor$ -th element

This takes $\mathcal{O}(n \log n)$ time.

But it can be done in linear time!

The algorithm is more general: for A a list and k a number,

M(A, k) := the k-th element of the sorted version of A.

Then the median of A is $M(A, \frac{|A|}{2})$.

H. Geuvers Version: spring 2025 Complexity 10 / 18

Computing the median of a list in linear time (I)

M(A, k) :=the k-th element of the sorted version of A.

Let n = |A|. For purpose of exposition, we assume n = 5p for some p. (If n < 5p add 0s to get n = 5p.)

- ① Split A randomly in $\frac{n}{5}$ groups of 5 elements
- 2 Determine the median of each group of 5 elements.
- 3 Determine recursively the median of these $\frac{n}{5}$ medians, say m
- **4** Count the number of elements in A that are $\leq m$, say ℓ .
 - If $\ell = k$, we are done and m is the output.
 - If $\ell > k$, then m is larger than the number we are looking for, so we continue recursively with $M(A \setminus A_{\text{high}}, k)$
 - If $\ell < k$, then m is smaller than the number we are looking for, so we continue recursively with $M(A \setminus A_{low}, k |A_{low}|)$.
 - Until n is "very small", say $n \le 10$, then compute the k-th element directly
- **Q.** What exactly are A_{high} and A_{low} and how large are they?

H. Geuvers Version: spring 2025 Complexity 11 / 18

Computing the median of a list in linear time (II)

- **1** Split A randomly in $\frac{n}{5}$ groups of 5 elements
- 2 Determine the median of each group of 5 elements.
- **3** Determine recursively the median of these $\frac{n}{5}$ medians, say m
- **4** Count the number of elements in A that are $\leq m$, say ℓ .
 - If $\ell = k$, we are done and m is the output.
 - If $\ell > k$, then m is larger than the number we are looking for, so we continue recursively with $M(A \setminus A_{\text{high}}, k)$
 - If $\ell < k$, then m is smaller than the number we are looking for, so we continue recursively with $M(A \setminus A_{\text{low}}, k 3 \lceil \frac{n}{10} \rceil)$.
 - Until n is "very small", say $n \le 10$, then compute the k-th element directly

Complexity:

$$T(n) = T(\frac{n}{5}) + T(\frac{7n}{10}) + \Theta(n).$$

Note that steps (1), (2) and the first part of (4) are linear in n.

H. Geuvers Version: spring 2025 Complexity 12 / 18

Computing the median of a list in linear time (III)

$$T(n) \le T(\frac{n}{5}) + T(\frac{7n}{10}) + cn$$
 for some c .

To find the complexity class of T we can make a recursion tree.

- The height is between $\log_5 n$ and $\log_{\frac{10}{7}} n$, which is on average below $\log_2 n$, so an upperbound for the number of leaves is $2^{\log_2 n} = n^{\log_2 2} = n$
- The layers: $\sum_{i=0}^{??} (\frac{9}{10})^i c n \le \sum_{i=0}^{\infty} (\frac{9}{10})^i c n = c n \sum_{i=0}^{\infty} (\frac{9}{10})^i = 10 c n$
- Conjecture $T(n) \le 10 c n$.

H. Geuvers Version: spring 2025 Complexity 13 / 18

Computing the median of a list in linear time (IV)

$$T(n) \leq T(\frac{n}{5}) + T(\frac{7n}{10}) + cn.$$

From the recursion tree method we conjecture that $T(n) \le 10 c n$.

Proof by induction on n

- For small n, it is correct. (Possibly need to choose a larger c.)
- For larger *n*:

$$T(n) \leq T(\frac{n}{5}) + T(\frac{7n}{10}) + cn$$

$$| H
\leq 10 c(\frac{n}{5}) + 10 c(\frac{7n}{10}) + cn$$

$$= 2 c n + 7 c n + c n$$

$$= 10 c n$$

So $T(n) = \mathcal{O}(n)$, and so M is linear in the length of the input list.

H. Geuvers Version: spring 2025 Complexity 14 / 18

Master Theorem

THEOREM

Suppose $a \ge 1$ and b > 1 and we abbreviate $\gamma := \log_b a$.

$$T(n) = aT(\frac{n}{b}) + f(n).$$

Then

- $T(n) = \Theta(n^{\gamma})$ if $f(n) = \mathcal{O}(n^d)$ for some $d < \gamma$.

 f is "relatively small" compared to n^{γ}
- 2 $T(n) = \Theta(n^{\gamma} \log n)$ if $f(n) = \Theta(n^{\gamma})$.
 - E.g. the Mergesort case
- **③** $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^d)$ for some $d > \gamma$ and $\exists c \in (0,1) \exists N \, \forall n > N(a \, f(\frac{n}{b}) \leq c \, f(n)).$ f is "relatively large" compared to n^γ

H. Geuvers Version: spring 2025 Complexity 16 / 18

Using the Master Theorem (I)

$$T(n) = 9T(\frac{n}{3}) + n$$

THEOREM (with $\gamma = \log_b a$)

- **1** $T(n) = \Theta(n^{\gamma})$ if $f(n) = \mathcal{O}(n^d)$ for some $d < \gamma$.
- 2 $T(n) = \Theta(n^{\gamma} \log n)$ if $f(n) = \Theta(n^{\gamma})$.
- $T(n) = \Theta(f(n)) \text{ if } f(n) = \Omega(n^d) \text{ for some } d > \gamma \text{ and } \\ \exists c \in (0,1) \exists N \, \forall n > N(a \, f(\frac{n}{b}) \leq c \, f(n)).$

Now, a=9 and b=3, so $\gamma=\log_b a=\log_3 9=2$. Also $f(n)=n=\mathcal{O}(n)=\mathcal{O}(n^1)$ and $1<2=\gamma$. So case (1) of the Master Theorem applies and we have

$$T(n) = \Theta(n^2).$$

H. Geuvers Version: spring 2025

Using the Master Theorem (II)

THEOREM (with $\gamma = \log_b a$)

- **1** $T(n) = \Theta(n^{\gamma})$ if $f(n) = \mathcal{O}(n^d)$ for some $d < \gamma$.
- 2 $T(n) = \Theta(n^{\gamma} \log n)$ if $f(n) = \Theta(n^{\gamma})$.
- **3** $T(n) = \Theta(f(n))$ if $f(n) = \Omega(n^d)$ for some $d > \gamma$ and $\exists c \in (0,1) \exists N \, \forall n > N(a \, f(\frac{n}{b}) \leq c \, f(n)).$

$$T(n) = 9T(\frac{n}{4}) + n^2.$$

Now, a = 9 and b = 4, so $\gamma = log_b a = log_4 9 \approx 1.584$.

Also $f(n) = n^2 = \Omega(n^2)$ and $2 > \gamma$.

So case (3) of the Master Theorem applies and we have

$$T(n) = \Theta(n^2).$$

We need an extra check:

 $\exists c \in (0,1) \exists N \, \forall n \geq N(a \, f(\frac{n}{b}) \leq c \, f(n))??$

That is: $9(\frac{n}{4})^2 \le cn^2$, so take $c := \frac{9}{16}$ and this is ok.

H. Geuvers Version: spring 2025 Complexity 18 / 18