
Coq Assignment for Proving with Computer Assistance

Herman Geuvers

You can make the assignment in couples; please write clearly both names and student numbers
on all documents you hand in.

Grading

Your assignment will be evaluated on the following points

1. Correctness Coq: The proofs should all be completed and finished, otherwise you will get at
most a 5.

2. Correctness definitions: Do the definitions capture the notions correctly?

3. Effectivity of Coq definitions and statements: Are the definitions and lemmas well-chosen?
Proper break-down in sublemmas? Notation well-chosen?

4. Effectivity of Coq proofs: concise proofs, proper abstractions.

5. Quality of the report: explanation of problem and definitions, explanation of the main line
of the proof.

6. Independency (“zelfstandigheid”): how much help/suggestions were received?

7. Plus features: Remarkable use of tactics or Coq features; remarkably smart definitions;
additional proofs and properties.

There is one standard assignment, but you may also choose the alternative one, or you may
choose one from the list at
http://www.cs.ru.nl/~freek/courses/tt-2017/public/huiswerk.pdf.

The standard assignment is split up in 2 parts:

• In case you finish only part I, you can at most receive a grade of 8.

• In case you finish all proofs for part I (with correct definitions) you will receive at least a
5.5.

• In case you finish both parts I and II you can receive at most a 10 (but then of course all
evaluation points should be excellent).

Standard Assignment Part I: sorting of binary search trees

• We define the inductive type tree representing binary trees of natural numbers.

Inductive tree : Set :=

| leaf : tree

| node : tree -> nat -> tree -> tree.
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• Define a predicate bst on tree to express that a tree is sorted, i.e. it is a binary search
tree (see http://en.wikipedia.org/wiki/Binary_search_tree for introduction to binary
search trees). Experience of the past has shown that it works very well if you define bst as
a recursive function:

Fixpoint bst (T : tree) : Prop := ...

If you are up for a real challenge you can try to make this exercise using some vari-
ant of self-balancing search trees, see http://en.wikipedia.org/wiki/Self-balancing_

binary_search_tree; but before you do that make sure you can solve the basic version of
this exercise!

• Define a function insert that takes a binary search tree and a natural number and inserts
the number in the right place in the tree.

• Prove correctness of the insert function that is prove that:

bst t -> bst (insert n t) (for all t:tree, n:nat).

• Define a function sort that takes an arbitrary tree and sorts it, i.e. it transforms it into a
binary search tree. Hint: you can define two auxiliary functions, one that stores the elements
of a tree in a list and one that builds a binary search tree from the elements of a list.

• Prove that the result of the sort function is always a binary search tree.

• Given the predicate occurs expressing that an element belongs to a tree, prove that the
sorted version of a tree contains the same elements as the original one, i.e. prove:

“occurs n t <-> occurs n (sort t)” (for all n:nat, t:tree)

Standard Assignment Part II: the minimum of a binary search
tree

• Define a function treeMin that will return the value of the minimal node in a tree. You
may want to use Coq.Arith.Min for the minimum function. Note that every function in
Coq needs to be total and you will need to decide what this function should return applied
on an empty tree. To do this, use the option type. Check the definition of option by doing
Print option.

• Given the predicate occurs expressing that an element belongs to a tree, prove correctness
of the treeMin function, i.e. prove that:

– the minimal element belongs to the tree and

– that the values in all nodes are greater or equal than the minimal value.

• Define a function leftmost that given a tree will return a value of its leftmost node.

• Prove that the minimal element of a binary search tree (use the predicate bst on tree) is
its leftmost node.

• Define a function search that given a binary search tree will check whether a given natural
number occurs in the tree. It should use the fact that the tree is a binary search tree so it
should look only on one branch of a tree, instead of on all of its nodes.

• Prove that the search function is correct, i.e. prove:

“bst t -> (occurs n t <-> search n t)” (for all n:nat, t:tree)
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Alternative Assignment: satisfiability (assign sat)

We study propositional formulas and check whether they are “satisfiable”. A formula f is satisfi-
able if there is a valuation ρ (a valuation is a map that assigns 0 or 1 to each of the proposition
variables) such that ρ(f) = 1.

Here, ρ(f) is computed using the well-known “truth table semantics”.

• Define the inductive type of “propositional expressions” form with the following constructors.

f_var : nat -> form

f_and : form -> form -> form

f_or : form -> form -> form

f_imp : form -> form -> form

f_neg : form -> form

f var gives us infinitely many propositional variables, that are all indexed by a natural
number.

• Define the notion of a “model” as a valuation ρ that assigns a boolean to each natural
number. This can be done in various ways:

– model : nat → bool

– model : list(nat ∗ bool)
– model : listbool

The last two assign a boolean to only finitely many numbers, but a proposition contains
only finitely many variables anyway, so that’s no problem. each of these choices has pros
and cons; probably the second is easiest to work with.

• Define a function find model that, given an e:form, computes a model ρ in which e is true
(i.e. in which ρ(e) = true).

Let find model give an “error” message if no such ρ exists, by making it of type form ->

option model. Check the definition of option by doing Print option

NB. To define find model, you will probably have to:

– First collect the list of proposition variables that occur in e.

– Then, by recursion over this list, try out all different valuations of {true, false} to the
proposition variables occurring in e.

• Prove that find model “works” : if find model e ̸= None , then find model e produces
a model of e.
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