Proving with Computer Assistance

Representative exam questions

Apart from the exercises that have already been presented at the lecture, here are some more representative questions related to Normalization and Church-Rosser that could be at the exam. See the Slides and the Course Notes by Herman Geuvers for the definitions. We consider the term

$$M := (\lambda x. \mathbf{I}_1 \left(x \left(x \left(\mathbf{I}_2 \, \mathbf{I}_3 \right) \right) \right)) \left(\mathbf{I}_4 \, \mathbf{I}_5 \right)$$

where each of the \mathbf{I}_i is just a different copy of the identity, $\lambda y.y.$ (I have labelled each occurrence of \mathbf{I} with a different index for clarity.) We also abbreviate $P := \lambda x.\mathbf{I}_1 (x (x (\mathbf{I}_2 \mathbf{I}_3))).$

We let \mathbf{I}_3 be of type $\alpha \rightarrow \alpha$ (for α a type variable) and write A for $\alpha \rightarrow \alpha$.

- 1. Give a type to M in simple type theory, using $I_3 : A$. You don't have to give a derivation, but give the types of x, I_1 , I_2 , I_4 and I_5 in M.
- 2. What is m(M)? Here m is the measure given to a term in the WN (weak normalization) proof. Explain your answer.
- 3. In the proof of WN, we contract a specific redex in M, to arrive at a new term N, so $M \longrightarrow_{\beta} N$. What is N? Explain your answer.
- 4. In the proof of CR (Church-Rosser), we use the function $(-)^*$. What are M^* and $(M^*)^*$?
- 5. Give the reduction graph of M.