Proving with Computer Assistance, 2IMF15

Herman Geuvers, TUE

Exercises on Polymorphic type Theory

1. Recall: $\bot := \forall \alpha. \alpha, \top := \forall \alpha. \alpha \rightarrow \alpha$.

- (a) Verify that in Church $\lambda 2: \lambda x: \top . x \top x : \top \to \top$.
- (b) Verify that in Curry $\lambda 2: \lambda x.xx: \top \rightarrow \top$
- (c) Find a type in Curry $\lambda 2$ for $\lambda x.x x x$
- (d) Find a type in Curry $\lambda 2$ for $\lambda x.(x x)(x x)$
- (e) Find a type in Curry $\lambda 2$ for $\lambda z.z(\lambda x.x x)$
- 2. Let $x : \top$ and remember that $\top := \forall \alpha : * . \alpha \rightarrow \alpha$.
 - (a) Give a type to the term

$$\lambda y.x y x(\lambda z.z x z)$$

in $\lambda 2$ à la Curry and give the typing derivation of your result.

(b) Give a type to the term

$$\lambda y.x y (x(\lambda z.z z))$$

in $\lambda 2$ à la Curry. Also give the typing derivation of your result.

- 3. Define: $\sigma \times \tau := \forall \alpha. (\sigma \rightarrow \tau \rightarrow \alpha) \rightarrow \alpha$, $\sigma + \tau := \forall \alpha. (\sigma \rightarrow \alpha) \rightarrow (\tau \rightarrow \alpha) \rightarrow \alpha$ $\operatorname{Tree}_{A,B} := \forall \alpha. (B \rightarrow \alpha) \rightarrow (A \rightarrow \alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha$
 - (a) Define inl : $\sigma \rightarrow \sigma + \tau$
 - (b) Define pairing : $[-, -] : \sigma \to \tau \to \sigma \times \tau$
 - (c) Show that the addition function (as defined on the slides) behaves as expected.
 - (d) Define leaf : $B \to \text{Tree}_{A,B}$ and join : $\text{Tree}_{A,B} \to \text{Tree}_{A,B} \to A \to \text{Tree}_{A,B}$
 - (e) Give the Tree-iteration scheme for $\text{Tree}_{A,B}$ and define $h: \text{Tree}_{A,B} \to \text{Nat}$ that counts the number of leaves of a tree.