Eindhoven University of Technology

Faculty of Mathematics and Computer Science

Written Exam (resit) Proving with Computer Assistance 2IF65

Monday June 22 2015, 13.30-16.30
The maximum number of points per exercise is indicated in the margin. Maxium 100 points in total NB Typing derivations may be given in "flag style" or in "sequent style".

1. Construct a term M of type $((\alpha \rightarrow \beta) \rightarrow \beta \rightarrow \alpha) \rightarrow \beta \rightarrow \alpha$ in simple type theory $(\lambda \rightarrow)$ à la Church and give a typing derivation of

$$
M:((\alpha \rightarrow \beta) \rightarrow \beta \rightarrow \alpha) \rightarrow \beta \rightarrow \alpha
$$

2. Show that the following term P is typable in simple type theory $(\lambda \rightarrow)$ à la Church.

$$
\lambda x:(\alpha \rightarrow \alpha) \rightarrow \alpha . x(\lambda y: \alpha . x(\lambda z: \alpha . y))
$$

Give a typing derivation that gives the type of P.
3. Consider the following two terms

- $\lambda x . \lambda y . x(\lambda z . y) y$
- $\lambda x . \lambda y . x(\lambda z . x) y$

For each of these terms, compute its principle type in simple type theory $(\lambda \rightarrow)$ à la Curry, if it exists.
Give the end result and show your computation; if the term has no principle type, show how your computation yields 'fail'.
4. Let $x: \top$ and remember that $\top:=\forall \alpha: * . \alpha \rightarrow \alpha$. Give a type to the term

$$
\lambda y . x y x(\lambda z . z x z)
$$

in $\lambda 2$ à la Curry. Also give the typing derivation of your result.
5. In $\lambda 2$ à la Church we define the type T of ternary trees as follows.

$$
T:=\forall \alpha: * . \alpha \rightarrow(\alpha \rightarrow \alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow \alpha
$$

The constant leaf : T is defined as follows.

$$
\text { leaf }:=\lambda \alpha: * . \lambda l: \alpha . \lambda j: \alpha \rightarrow \alpha \rightarrow \alpha \rightarrow \alpha . l
$$

$$
\begin{aligned}
\Gamma:= & A: *, c: A, R: A \rightarrow A \rightarrow *, f: A \rightarrow A, k: \Pi x: A . R c x, \\
& h: \Pi x, y: A . R x y \rightarrow R(f x)(f y), r: \Pi x, y: A \cdot R x y \rightarrow R x(f y)
\end{aligned}
$$

(a) Construct a term M (and give a typing derivation in short form) such that

$$
\Gamma \vdash M: \Pi x: A \cdot R(f c)(f(f x))
$$

(b) Construct a term N (and give a typing derivation in short form) such that

$$
\Gamma \vdash N: \Pi x, y: A . R(f x) y \rightarrow R(f(f x))(f(f y)) .
$$

7. We define, in the Calculus of Constructions λC, given $A: *$,

$$
T:=\lambda a, b: A . \Pi R: A \rightarrow A \rightarrow * .(\Pi x: A . R x x) \rightarrow(\Pi x, y: A . R x y \rightarrow R y x) \rightarrow R a b
$$

(a) Give a term of type
Пa:A.T a a
(b) Give a term of type

$$
\Pi a, b: A . T a b \rightarrow T b a
$$

NB. In both cases, give a typing derivation in short version (where you don't have to establish the well-formedness of the types themselves).

END

