
Introduction to Lambda Calculus

Henk Barendregt Erik Barendsen

Revised edition

December 1998, March 2000

Chapter 1

Introduction

Some history

Leibniz had as ideal the following.

(1) Create a ‘universal language’ in which all possible problems can be stated.
(2) Find a decision method to solve all the problems stated in the universal

language.

If one restricts oneself to mathematical problems, point (1) of Leibniz’ ideal
is fulfilled by taking some form of set theory formulated in the language of
first order predicate logic. This was the situation after Frege and Russell (or
Zermelo).

Point (2) of Leibniz’ ideal became an important philosophical question. ‘Can
one solve all problems formulated in the universal language?’ It seems not,
but it is not clear how to prove that. This question became known as the
Entscheidungsproblem.

In 1936 the Entscheidungsproblem was solved in the negative independently
by Alonzo Church and Alan Turing. In order to do so, they needed a formali-
sation of the intuitive notion of ‘decidable’, or what is equivalent ‘computable’.
Church and Turing did this in two different ways by introducing two models of
computation.

(1) Church (1936) invented a formal system called the lambda calculus and
defined the notion of computable function via this system.

(2) Turing (1936/7) invented a class of machines (later to be called Turing
machines) and defined the notion of computable function via these machines.

Also in 1936 Turing proved that both models are equally strong in the sense
that they define the same class of computable functions (see Turing (1937)).

Based on the concept of a Turing machine are the present day Von Neu-
mann computers. Conceptually these are Turing machines with random access
registers. Imperative programming languages such as Fortran, Pascal etcetera
as well as all the assembler languages are based on the way a Turing machine
is instructed: by a sequence of statements.

Functional programming languages, like Miranda, ML etcetera, are based on
the lambda calculus. An early (although somewhat hybrid) example of such a
language is Lisp. Reduction machines are specifically designed for the execution
of these functional languages.

5

6 Introduction to Lambda Calculus

Reduction and functional programming

A functional program consists of an expression E (representing both the al-
gorithm and the input). This expression E is subject to some rewrite rules.
Reduction consists of replacing a part P of E by another expression P ′ accord-
ing to the given rewrite rules. In schematic notation

E[P] → E[P ′],

provided that P → P ′ is according to the rules. This process of reduction
will be repeated until the resulting expression has no more parts that can be
rewritten. This so called normal form E∗ of the expression E consists of the
output of the given functional program.

An example:

(7 + 4) ∗ (8 + 5 ∗ 3) → 11 ∗ (8 + 5 ∗ 3)

→ 11 ∗ (8 + 15)

→ 11 ∗ 23

→ 253.

In this example the reduction rules consist of the ‘tables’ of addition and of
multiplication on the numerals.

Also symbolic computations can be done by reduction. For example

first of (sort (append (‘dog’, ‘rabbit’) (sort ((‘mouse’, ‘cat’))))) →

→ first of (sort (append (‘dog’, ‘rabbit’) (‘cat’, ‘mouse’)))

→ first of (sort (‘dog’, ‘rabbit’, ‘cat’, ‘mouse’))

→ first of (‘cat’, ‘dog’, ‘mouse’, ‘rabbit’)

→ ‘cat’.

The necessary rewrite rules for append and sort can be programmed easily
in a few lines. Functions like append given by some rewrite rules are called
combinators.

Reduction systems usually satisfy the Church-Rosser property , which states
that the normal form obtained is independent of the order of evaluation of
subterms. Indeed, the first example may be reduced as follows:

(7 + 4) ∗ (8 + 5 ∗ 3) → (7 + 4) ∗ (8 + 15)

→ 11 ∗ (8 + 15)

→ 11 ∗ 23

→ 253,

or even by evaluating several expressions at the same time:

(7 + 4) ∗ (8 + 5 ∗ 3) → 11 ∗ (8 + 15)

→ 11 ∗ 23

→ 253.

Introduction 7

Application and abstraction

The first basic operation of the λ-calculus is application. The expression

F · A

or
FA

denotes the data F considered as algorithm applied to the data A considered
as input. This can be viewed in two ways: either as the process of computation
FA or as the output of this process. The first view is captured by the notion
of conversion and even better of reduction; the second by the notion of models
(semantics).

The theory is type-free: it is allowed to consider expressions like FF , that
is F applied to itself. This will be useful to simulate recursion.

The other basic operation is abstraction. If M ≡ M [x] is an expression
containing (‘depending on’) x, then λx.M [x] denotes the function x 7→ M [x].
Application and abstraction work together in the following intuitive formula.

(λx.2 ∗ x + 1)3 = 2 ∗ 3 + 1 (= 7).

That is, (λx.2 ∗ x + 1)3 denotes the function x 7→ 2 ∗ x + 1 applied to the
argument 3 giving 2∗3+1 which is 7. In general we have (λx.M [x])N = M [N].
This last equation is preferably written as

(λx.M)N = M [x := N], (β)

where [x := N] denotes substitution of N for x. It is remarkable that although
(β) is the only essential axiom of the λ-calculus, the resulting theory is rather
involved.

Free and bound variables

Abstraction is said to bind the free variable x in M . E.g. we say that λx.yx
has x as bound and y as free variable. Substitution [x := N] is only performed
in the free occurrences of x:

yx(λx.x)[x := N] ≡ yN(λx.x).

In calculus there is a similar variable binding. In
∫ b

a
f(x, y)dx the variable x is

bound and y is free. It does not make sense to substitute 7 for x:
∫ b

a
f(7, y)d7;

but substitution for y makes sense:
∫ b

a
f(x, 7)dx.

For reasons of hygiene it will always be assumed that the bound variables
that occur in a certain expression are different from the free ones. This can be
fulfilled by renaming bound variables. E.g. λx.x becomes λy.y. Indeed, these
expressions act the same way:

(λx.x)a = a = (λy.y)a

and in fact they denote the same intended algorithm. Therefore expressions
that differ only in the names of bound variables are identified.

8 Introduction to Lambda Calculus

Functions of more arguments

Functions of several arguments can be obtained by iteration of application. The
idea is due to Schönfinkel (1924) but is often called currying , after H.B. Curry
who introduced it independently. Intuitively, if f(x, y) depends on two argu-
ments, one can define

Fx = λy.f(x, y),

F = λx.Fx.

Then
(Fx)y = Fxy = f(x, y). (∗)

This last equation shows that it is convenient to use association to the left for
iterated application:

FM1 · · ·Mn denotes (··((FM1)M2) · · ·Mn).

The equation (∗) then becomes

Fxy = f(x, y).

Dually, iterated abstraction uses association to the right :

λx1 · · · xn.f(x1, . . . , xn) denotes λx1.(λx2.(· · · (λxn.f(x1, . . . , xn))··)).

Then we have for F defined above

F = λxy.f(x, y)

and (∗) becomes
(λxy.f(x, y))xy = f(x, y).

For n arguments we have

(λx1 · · ·xn.f(x1, · · · , xn))x1 · · · xn = f(x1, . . . , xn)

by using n times (β). This last equation becomes in convenient vector notation

(λ~x.f [~x])~x = f [~x];

more generally one has
(λ~x.f [~x]) ~N = f [~N].

Chapter 2

Conversion

In this chapter, the λ-calculus will be introduced formally.

2.1. Definition. The set of λ-terms (notation Λ) is built up from an infinite
set of variables V = {v, v′, v′′, . . .} using application and (function) abstraction.

x ∈ V ⇒ x ∈ Λ,

M,N ∈ Λ ⇒ (MN) ∈ Λ,

M ∈ Λ, x ∈ V ⇒ (λxM) ∈ Λ.

In BN-form this is

variable ::= ‘v’ | variable ‘′’

λ-term ::= variable | ‘(’ λ-term λ-term ‘)’ | ‘(λ’ variable λ-term ‘)’

2.2. Example. The following are λ-terms.

v′;

(v′v);

(λv(v′v));

((λv(v′v))v′′);

(((λv(λv′(v′v)))v′′)v′′′).

2.3. Convention. (i) x, y, z, . . . denote arbitrary variables; M,N,L, . . . de-
note arbitrary λ-terms. Outermost parentheses are not written.

(ii) M ≡ N denotes that M and N are the same term or can be obtained
from each other by renaming bound variables. E.g.

(λxy)z ≡ (λxy)z;

(λxx)z ≡ (λyy)z;

(λxx)z 6≡ z;

(λxx)z 6≡ (λxy)z.

(iii) We use the abbreviations

FM1 · · ·Mn ≡ (··((FM1)M2) · · ·Mn)

9

10 Introduction to Lambda Calculus

and

λx1 · · ·xn.M ≡ λx1(λx2(· · · (λxn(M))··)).

The terms in Example 2.2 now may be written as follows.

y;

yx;

λx.yx;

(λx.yx)z;

(λxy.yx)zw.

Note that λx.yx is (λx(yx)) and not ((λx.y)x).

2.4. Definition. (i) The set of free variables of M , notation FV(M), is de-
fined inductively as follows.

FV(x) = {x};

FV(MN) = FV(M) ∪ FV(N);

FV(λx.M) = FV(M) − {x}.

A variable in M is bound if it is not free. Note that a variable is bound if it
occurs under the scope of a λ.

(ii) M is a closed λ-term (or combinator) if FV(M) = ∅. The set of closed
λ-terms is denoted by Λo.

(iii) The result of substituting N for the free occurences of x in M , notation
M [x := N], is defined as follows.

x[x := N] ≡ N ;

y[x := N] ≡ y, if x 6≡ y;

(M1M2)[x := N] ≡ (M1[x := N])(M2[x := N]);

(λy.M1)[x := N] ≡ λy.(M1[x := N]).

2.5. Example. Consider the λ-term

λxy.xyz.

Then x and y are bound variables and z is a free variable. The term λxy.xxy
is closed.

2.6. Variable convention. If M1, . . . ,Mn occur in a certain mathematical
context (e.g. definition, proof), then in these terms all bound variables are
chosen to be different from the free variables.

Note that in the fourth clause of Definition 2.4 (iii) it is not needed to say
‘provided that y 6≡ x and y /∈ FV(N)’. By the variable convention this is the
case.

Now we can introduce the λ-calculus as formal theory.

Conversion 11

2.7. Definition. (i) The principal axiom scheme of the λ-calculus is

(λx.M)N = M [x := N] (β)

for all M,N ∈ Λ.
(ii) There are also the ‘logical’ axioms and rules.

Equality:
M = M ;

M = N ⇒ N = M ;

M = N,N = L ⇒ M = L.

Compatibility rules:
M = M ′ ⇒ MZ = M ′Z;

M = M ′ ⇒ ZM = ZM ′;

M = M ′ ⇒ λx.M = λx.M ′. (ξ)

(iii) If M = N is provable in the λ-calculus, then we sometimes write λ ⊢
M = N .

As a consequence of the compatibility rules, one can replace (sub)terms by
equal terms in any term context:

M = N ⇒ · · ·M · · · = · · ·N · · · .

For example, (λy.yy)x = xx, so

λ ⊢ λx.x((λy.yy)x)x = λx.x(xx)x.

2.8. Remark. We have identified terms that differ only in the names of bound
variables. An alternative is to add to the λ-calculus the following axiom scheme

λx.M = λy.M [x := y], provided that y does not occur in M . (α)

We prefer our version of the theory in which the identifications are made on
syntactic level. These identifications are done in our mind and not on paper.
For implementations of the λ-calculus the machine has to deal with this so
called α-conversion. A good way of doing this is provided by the name-free
notation of de Bruijn, see Barendregt (1984), Appendix C.

2.9. Lemma. λ ⊢ (λx1 · · ·xn.M)X1 · · ·Xn = M [x1 := X1] · · · [xn := Xn].

Proof. By the axiom (β) we have

(λx1.M)X1 = M [x1 := X1].

By induction on n the result follows. �

12 Introduction to Lambda Calculus

2.10. Example (Standard combinators). Define the combinators

I ≡ λx.x;

K ≡ λxy.x;

K∗ ≡ λxy.y;

S ≡ λxyz.xz(yz).

Then, by Lemma 2.9, we have the following equations.

IM = M ;

KMN = M ;

K∗MN = N ;

SMNL = ML(NL).

Now we can solve simple equations.

2.11. Example. ∃G ∀X GX = XXX (there exists G ∈ Λ such that for all
X ∈ Λ one has λ ⊢ GX = XX). Indeed, take G ≡ λx.xxx and we are done.

Recursive equations require a special technique. The following result pro-
vides one way to represent recursion in the λ-calculus.

2.12. Fixedpoint Theorem. (i) ∀F ∃X FX = X. (This means: for all
F ∈ Λ there is an X ∈ Λ such that λ ⊢ FX = X.)

(ii) There is a fixed point combinator

Y ≡ λf.(λx.f(xx))(λx.f(xx))

such that

∀F F (YF) = YF.

Proof. (i) Define W ≡ λx.F (xx) and X ≡ WW . Then

X ≡ WW ≡ (λx.F (xx))W = F (WW) ≡ FX.

(ii) By the proof of (i). �

2.13. Example. (i) ∃G ∀X GX = SGX. Indeed,

∀X GX = SGX ⇐ Gx = SGx

⇐ G = λx.SGx

⇐ G = (λgx.Sgx)G

⇐ G ≡ Y(λgx.Sgx).

Note that one can also take G ≡ YS.

(ii) ∃G ∀X GX = GG: take G ≡ Y(λgx.gg). (Can you solve this without
using Y?)

Conversion 13

In the lambda calculus one can define numerals and represent numeric func-
tions on them.

2.14. Definition. (i) F n(M) with F ∈ Λ and n ∈ N is defined inductively as
follows.

F 0(M) ≡ M ;

Fn+1(M) ≡ F (F n(M)).

(ii) The Church numerals c0, c1, c2, . . . are defined by

cn ≡ λfx.fn(x).

2.15. Proposition (J.B. Rosser). Define

A+ ≡ λxypq.xp(ypq);

A∗ ≡ λxyz.x(yz);

Aexp ≡ λxy.yx.

Then one has for all n,m ∈ N

(i) A+cncm = cn+m.

(ii) A∗cncm = cn∗m.

(iii) Aexpcncm = c(nm), except for m = 0 (Rosser started counting from 1).

In the proof we need the following.

2.16. Lemma. (i) (cnx)m(y) = xn∗m(y).

(ii) (cn)m(x) = c(nm)(x), for m > 0.

Proof. (i) Induction on m. If m = 0, then LHS = y = RHS. Assume (i) is
correct for m (Induction Hypothesis: IH). Then

(cnx)m+1(y) = cnx((cnx)m(y))

= cnx(xn∗m(y)) by IH,

= xn(xn∗m(y))

≡ xn+n∗m(y)

≡ xn∗(m+1)(y).

(ii) Induction on m > 0. If m = 1, then LHS ≡ cnx ≡ RHS. If (ii) is correct
for m, then

(cn)m+1(x) = cn((cn)m(x))

= cn(c(nm)(x)) by IH,

= λy.(c(nm)(x))n(y)

= λy.xnm
∗n(y) by (i),

= c(nm+1)x.

14 Introduction to Lambda Calculus

Proof of the proposition. (i) Exercise.
(ii) Exercise. Use Lemma 2.16 (i).
(iii) By Lemma 2.16 (ii) we have for m > 0

Aexpcncm = cmcn

= λx.(cn)m(x)

= λx.c(nm)x

= c(nm),

since λx.Mx = M if M ≡ λy.M ′[y] and x /∈ FV(M). Indeed,

λx.Mx ≡ λx.(λy.M ′[y])x

= λx.M ′[x]

≡ λy.M ′[y]

≡ M. �

Exercises

2.1. (i) Rewrite according to official syntax

M1 ≡ y(λx.xy(λzw.yz)).

(ii) Rewrite according to the simplified syntax

M2 ≡ λv′(λv′′((((λvv)v′)v′′)((v′′(λv′′′(v′v′′′)))v′′))).

2.2. Prove the following substitution lemma. Let x 6≡ y and x /∈ FV(L). Then

M [x := N][y := L] ≡ M [y := L][x := N [y := L]].

2.3. (i) Prove, using Exercise 2.2,

λ ⊢ M1 = M2 ⇒ λ ⊢ M1[x := N] = M2[x := N].

(ii) Show

λ ⊢ M1 = M2 &λ ⊢ N1 = N2 ⇒ λ ⊢ M1[x := N1] = M2[x := N2].

2.4. Prove Proposition 2.15 (i), (ii).

2.5. Let B ≡ λxyz.x(yz). Simplify M ≡ BXY Z, that is find a ‘simple’ term N such
that λ ⊢ M = N .

2.6. Simplify the following terms.
(i) M ≡ (λxyz.zyx)aa(λpq.q);
(ii) M ≡ (λyz.zy)((λx.xxx)(λx.xxx))(λw.I);
(iii) M ≡ SKSKSK.

2.7. Show that
(i) λ ⊢ KI = K∗;
(ii) λ ⊢ SKK = I.

2.8. (i) Write down a closed λ-term F ∈ Λ such that for all M, N ∈ Λ

FMN = M(NM)N.

Conversion 15

(ii) Construct a λ-term F such that for all M, N, L ∈ Λo

FMNL = N(λx.M)(λyz.yLM).

2.9. Find closed terms F such that
(i) Fx = xI;
(ii) Fxy = xIy.

2.10. Find closed terms F such that
(i) Fx = F . This term can be called the ‘eater’ and is often denoted by K∞;
(ii) Fx = xF ;
(iii) F IKK = FK.

2.11. Show
∀C[,] ∃F ∀~x F~x = C[F, ~x]

and take another look at the exercises 2.8, 2.9 and 2.10.

2.12. Let P, Q ∈ Λ. P and Q are incompatible, notation P ♯ Q, if λ extended with
P = Q as axiom proves every equation between λ-terms, i.e. for all M, N ∈ Λ
one has λ + (P = Q) ⊢ M = N . In this case one says that λ + (P = Q) is
inconsistent .
(i) Prove that for P, Q ∈ Λ

P ♯ Q ⇔ λ + (P = Q) ⊢ true = false,

where true ≡ K, false ≡ K∗.
(ii) Show that I ♯ K.
(iii) Find a λ-term F such that F I = x and FK = y.
(iv) Show that K ♯ S.

2.13. Write down a grammar in BN-form that generates the λ-terms exactly in the
way they are written in Convention 2.3.

Chapter 4

Reduction

There is a certain asymmetry in the basic scheme (β). The statement

(λx.x2 + 1)3 = 10

can be interpreted as ‘10 is the result of computing (λx.x2 + 1)3’, but not vice
versa. This computational aspect will be expressed by writing

(λx.x2 + 1)3 →→ 10

which reads ‘(λx.x2 + 1)3 reduces to 10’.

Apart from this conceptual aspect, reduction is also useful for an analysis
of convertibility. The Church-Rosser theorem says that if two terms are con-
vertible, then there is a term to which they both reduce. In many cases the
inconvertibility of two terms can be proved by showing that they do not reduce
to a common term.

4.1. Definition. (i) A binary relation R on Λ is called compatible (with the
operations) if

M R N ⇒ (ZM) R (ZN),

(MZ) R (NZ) and

(λx.M) R (λx.N).

(ii) A congruence relation on Λ is a compatible equivalence relation.

(iii) A reduction relation on Λ is a compatible, reflexive and transitive rela-
tion.

4.2. Definition. The binary relations →β, →→β and =β on Λ are defined in-
ductively as follows.

(i) 1. (λx.M)N →β M [x := N];
2. M →β N ⇒ ZM →β ZN , MZ →β NZ and λx.M →β λx.N .

(ii) 1. M →→β M ;
2. M →β N ⇒ M →→β N ;
3. M →→β N,N →→β L ⇒ M →→β L.

23

24 Introduction to Lambda Calculus

(iii) 1. M →→β N ⇒ M =β N ;
2. M =β N ⇒ N =β M ;
3. M =β N,N =β L ⇒ M =βL.

These relations are pronounced as follows.

M →→β N : Mβ-reduces to N ;

M →β N : Mβ-reduces to N in one step;

M =β N : M is β-convertible to N.

By definition →β is compatible, →→β is a reduction relation and =β is a con-
gruence relation.

4.3. Example. (i) Define

ω ≡ λx.xx,

Ω ≡ ωω.

Then Ω →β Ω.
(ii) KIΩ →→β I.

Intuitively, M =β N if M is connected to N via →β-arrows (disregarding
the directions of these). In a picture this looks as follows.

M
•

@
@R 	�

� @
@R

• • • •
N

@
@R 	�

� @
@R 	�

� @
@R 	�

�

• • • •

@
@R 	�

�

•

4.4. Example. KIΩ =β II. This is demonstrated by the following reductions.

KIΩ

@
@R
(λy.I)Ω II

@
@R 	�

�

I

4.5. Proposition. M =β N ⇔ λ ⊢ M = N .

Proof. By an easy induction. �

4.6. Definition. (i) A β-redex is a term of the form (λx.M)N . In this case
M [x := N] is its contractum.

(ii) A λ-term M is a β-normal form (β-nf) if it does not have a β-redex as
subexpression.

(iii) A term M has a β-normal form if M =β N and N is a β-nf, for some
N .

Reduction 25

4.7. Example. (λx.xx)y is not a β-nf, but has as β-nf the term yy.

An immediate property of nf’s is the following.

4.8. Lemma. Let M be a β-nf. Then

M →→β N ⇒ N ≡ M.

Proof. This is true if →→β is replaced by →β. Then the result follows by
transitivity. �

4.9. Church-Rosser Theorem. If M →→β N1, M →→β N2, then for some N3

one has N1 →→β N3 and N2 →→β N3; in diagram

M

		���
��

� @@@
@@@RR

N1 N2..............RR 		..
..
..
..
..
..
..

N3

The proof is postponed until 4.19.

4.10. Corollary. If M =β N , then there is an L such that M →→β L and
N →→β L.

An intuitive proof of this fact proceeds by a tiling procedure: given an arrow
path showing M =β N , apply the Church-Rosser property repeatedly in order
to find a common reduct. For the example given above this looks as follows.

M
•

@
@R 	�

� @
@R

• • • •
N

@
@R 	�

� @
@R 	�

� @
@R 	�

�

• • • •..............RR

@
@R 	�

�

		..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

•

		...
...

•

..............RR
•

This is made precise below.

