
Proving with Computer Assistance
Lecture 10

Higher Order Logic and the Calculus of Constructions

Herman Geuvers
For the slides, thanks to: Freek Wiedijk

The Barendregt cube

Barendregt cube: 8 typed λ-calculi, defined in one coherent way.
Generalization: Berardi & Terlouw: Pure Type Systems

framework for defining and studying typed λ-calculi
PTS = pure type system

the PTS rules are basically the λP rules as presented before.

variations on the product rule

Γ ` A : s1 Γ, x : A ` B : s2

Γ ` Πx : A.B : s2

λP s1 = ∗ , s2 ∈ {∗,�}

(s1, s2) ∈ {(∗, ∗), (∗,�)}
λ→ (s1, s2) ∈ {(∗, ∗)}
λ2 (s1, s2) ∈ {(∗, ∗), (�, ∗)}
λC (s1, s2) ∈ {(∗, ∗), (∗,�), (�, ∗), (�,�)}

(axiom) ` ∗ : �

(var)
Γ ` A : s

Γ, x :A ` x : A
(weak)

Γ ` A : s Γ ` M : C

Γ, x :A ` M : C

(Π)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s2

if (s1, s2) ∈ R

(λ)
Γ, x :A ` M : B Γ ` Πx :A.B : s

Γ ` λx :A.M : Πx :A.B

(app)
Γ ` M : Πx :A.B Γ ` N : A

Γ ` MN : B[N/x]

(conv)
Γ ` M : A Γ ` B : s

Γ ` M : B
if A =β B

(Π)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` Πx :A.B : s2
if (s1, s2) ∈ R

System R
λ→ (∗, ∗)
λ2 (system F) (∗, ∗) (�, ∗)
λP (LF) (∗, ∗) (∗,�)
λω (∗, ∗) (�,�)
λP2 (∗, ∗) (�, ∗) (∗,�)
λω (system Fω) (∗, ∗) (�, ∗) (�,�)
λPω (∗, ∗) (∗,�) (�,�)
λPω (CC) (∗, ∗) (�, ∗) (∗,�) (�,�)

the Barendregt cube

λω //
OO λCOO

λ2

??

//
OO

(�, ∗)

λP2

??

OO

λω // λPω

λ→ (∗,�) //

(�,�)

??

λP

??

Calculus of Constructions

λ→ in this presentation is equivalent to λ→ as presented before.
Similarly for λ2, λP, . . . This cube also gives a fine structure for the

Calculus of Constructions, CC (Coquand and Huet)

I Polymorphic data types on the ∗-level,
e.g. Πα: ∗ .α→(α→α)→α : ∗ .

I Predicate domains on the �-level,
e.g. N→N→∗ : �

I Logic on the ∗-level,
e.g. ϕ ∧ ψ := Πα: ∗ .(ϕ→ψ→α)→α : ∗.

I Universal quantification (first and higher order),
e.g. ΠP:N→∗ .Πx :N.Px→Px : ∗.

Examples

I Induction

∀P:N→∗ ((P 0)→ (∀x :N.(P x → P(S x)))→ ∀x :N.P x)

I Higher order predicates/functions: transitive closure of a
relation R

λR : A→A→∗ . λx , y : A.
(∀Q : A→A→∗ . (trans(Q)→ (R ⊆ Q)→ Q x y))

of type
(A→A→∗)→(A→A→∗)

Example trans clos higher order and inductively

I transitive closure in higher order logic:

λR : A→A→∗ . λx , y : A.
(∀Q : A→A→∗ . (trans(Q)→ (R ⊆ Q)→ Q x y))

of type
(A→A→∗)→(A→A→∗)

I transitive closure inductively:

Inductive TrclosInd (R : A->A->Prop) : A -> A -> Prop :=

| sub : forall x y : A, R x y -> TrclosInd x y

| trans : forall x y z : A,

TrclosInd x y -> TrclosInd y z -> TrclosInd x z.

Exercise trans clos higher order

Given the transitive closure of a binary relation, defined in higher
order logic:

trclosR := λx , y :A.

(∀Q:A→A→∗ .(trans(Q)→(R ⊆ Q)→(Q x y))).

1. Prove that the transitive closure is transitive.

2. Prove that the transitive closure of R contains R.

Higher order logic HOL

In higher order logic (originally due to Church[1940]) we have:

I higher order domains: D, D→Prop, (D→Prop)→Prop, etc
(sets of predicates over predicates over . . .).

I higher order function domains: (D→D)→D,
((D→D)→D)→D, etc.

I ∀-quantification over all domains

We can do Higher Order Logic in Coq
In Coq we often have the choice to define sets/predicates/relations
inductively or via higher order logic. The Standard Library uses
inductive representations.

Definability of other connectives (constructively)

⊥ := ∀α: ∗ .α
ϕ∧ψ := ∀α: ∗ .(ϕ→ ψ → α)→ α

ϕ∨ψ := ∀α: ∗ .(ϕ→ α)→ (ψ → α)→ α

∃x :σ.ϕ := ∀α: ∗ .(∀x :σ.ϕ→ α)→ α

Idea:
The definition of a connective is an encoding of the elimination
rule.

Existential quantifier

∃x :σ.ϕ := ∀α: ∗ .(∀x :σ.ϕ→ α)→ α

Derivation of the elimination rule in HOL.

∃x :σ.ϕ

[ϕ]
...
C

x /∈ FV(C , ass.)
C

∃x :σ.ϕ

(∀x :σ.ϕ→ C)→ C

[ϕ]
...
C

∀x :σ.ϕ→ C

C

Equality

Equality is definable in higher order logic:

t and q terms are equal if they share the same properties
(Leibniz equality)

Definition in HOL (for t, q : A):

t=Aq := ∀P:A→∗.(Pt → Pq)

I This equality is reflexive and transitive (easy)

I It is also symmetric(!) Trick: find a “smart” predicate P

Exercise: Prove reflexivity, transitivity and symmetry of =A.

CC versus HOL

Question: is the type theory CC really isomorphic with HOL?
No: only if we disambiguate ∗ into Set and Prop (or ∗s and ∗p).
This is the type theory of Coq.

Properties of CC

I Uniqueness of types
If Γ ` M : A and Γ ` M : B, then A=βB.

I Subject Reduction
If Γ ` M : A and M →β N, then Γ ` N : A.

I Strong Normalization
If Γ ` M : A, then all β-reductions from M terminate.

Proof of SN is a really difficult.

Decidability Questions

Γ ` M : σ? TCP
Γ ` M : ? TSP
Γ `? : σ TIP

For CC:

I TIP is undecidable

I TCP/TSP: simultaneously.
The type checking algorithm is close to the one for λP. (In
λP we had a judgement of correct context; this form of
judgement could also be introduced for CC)

