Proving with Computer Assistance

Lecture

Simple Type theory and Formulas-as-Types for propositional logic

Herman Geuvers

Typed A calculus as the basis for a Proof Assistant

Typed A calculus forms the basis for a variety of proof Assistants,
e.g. Coq (and Lean, Agda, Nuprl, Matita).

A-term ‘ type

program | specification

proof formula
Integrated system for proving and programming

Types are not sets
Types are a bit like sets, but types give syntactic information, e.g.

3+ (7x8)° : nat
whereas sets give semantic information, e.g.
3 € {neN|Vx,y,ze N (x"+y" #z")}.

» 3+ (7 x 8)° is of type nat because 3,7,8 are natural numbers
and X, + and power are operations on natural numbers.

» 3c{neN|Vx,y,ze€ NT(x" +y" # z")} because there are
no positive x, y, z such that x3 4+ y3 = z3, which is an
instance of Fermat's last Theorem, proved by Wiles.

» To establish that 3 is an element of the given set, we need a
proof, we can't just read it off from the components of the
statement.

» To establish 3 + (7 x 8)° : nat we don't need a proof but a
simple computation (the “reading the type of of the term”).

Decidability of :, undecidability of €

» Membership is undecidable in set theory, as it requires a proof
to establish a € A.

» Type checking is decidable: Verifying whether M is of type A
requires purely syntactic methods, which can be cast into a
typing algorithm.

1 oo
5. -
3+ (7 x8)°:nat versus 2502 TeN
n=

Question: Can we turn (e.g.)
{neN|Vx,y,z€ NT(x" +y" # z")}

into a (syntactic) type, with decidable type checking?

Phrased differently: can we talk about this set as a “subtype of
nat”?

Formulas are also types; proofs are terms

{né€nat|Vx,y,z€ NT(x" +y" # z")}
is a type.
Its terms are pairs (n, p) where
» n : nat
> p o Vx,y,z € INT(x"+ y" # 2")
So p is a proof, and we view the formula

Vx,y,z € NT(x" + y" # z") as the type of its proofs.

If we have decidable proof checking, then it is decidable whether a
given pair (n, p) is typable with the above type or not.
We summarize:

» proof checking = type checking,

» type checking is decidable (so proof checking is decidable),

» proof finding is not decidable (proof finding is required to
check an €-judgment).

Simple Type Theory

Simplest system: A— or simple type theory, STT. Just arrow types

Typ := TVar | (Typ—Typ)

» Examples: (a—f)—a, (a—p)—=((6—v)—=(a—7))

> Brackets associate to the right and outside brackets are
omitted:
(a=B)=(B—7)—a—y

» Types are denoted by o, 7,

Terms:

> typed variables x{, x5, ..., countably many for every o.

» application: if M : 0—7 and N : o, then (MN) : 7

» abstraction: if P : 7, then (Ax?.P) : 0—T

Examples of simply typed terms

XAy x 1 o—=T—0
)\xo‘ﬁﬂ.)\yﬁ_w./\zo‘.y(xz) o (a=pB)=(B—y)—a—y
)\xo‘,)\y(ﬁ_’a)_m.y()\zﬁ.x) o a=((f—a)—a)—a

For every type there is a term of that type:
x? o
Not for every type there is a closed term of that type:

(a—a)—a is not inhabited

[That is: there is no closed term of type (a—a)—a.]

Church’ simple type theory

Church formulation of simple type theory:terms with type
information.
Inductive definition of the terms:

» typed variables x{, x5, ..., countably many for every o.
» application: if M : o—7 and N : o, then (MN) : 7
» abstraction: if P : 7, then (Ax?.P): 0—T

Alternative: Inductive definition of the terms in rule form:

M:o—=1 N:o P:r

g .

X o MN : 1 M. P o=t
Advantage: We also have a derivation tree, a proof of the fact that
the term has that type.

We can reason over derivations.

Simple type theory a la Church with contexts

Formulation with contexts to declare the free variables:

X1:01,X0 1 02,...,Xp . 0p

is a context, usually denoted by I'.
Derivation rules of A— (a la Church):

xo el r-EM:o—=7THN:o NxokEP:T
x:0 = MN: 7 = x0.P:o—T1

[Fx_. M : o if there is a derivation using these rules with
conclusion T M : o

Reading the typing rules top down

Inductive definition of the “derivable judgments”

xoel rN-M:o—=7T'EN:o MxokFP:T
N=x:0 M= MN: T M- Xx:0.P:o—=1
Deriving

F Axa\y:(f—a)—a.y(Az:5.x) : a=((f—a)—a)—a

Reading the typing rules bottom up

Trying to solve a typing problem / an inhabitation problem

xo el rEM:o—=1THN:o MNxokFP:T
N=x:0 M= MN:T M= x:0.P:o—T1

Formulas-as-Types (Curry, Howard)

There are two readings of a judgement M : o

1. term as algorithm/program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o
» There is a one-to-one correspondence:
typable terms in A— =~ derivations in minimal proposition
logic
> X1 :T1,X0:To,...,Xn:Tn b M : 0o can be read as
M is a proof of o from the assumptions 7,72, ..., 7.

Example

[a=B—=91 [[a=p8] [a]*
B—y B
Y
1
oy
B —
(a—=p)—a—y

(a—=p—=7y)=(a—p)—a—y

Axia—B—=y. A y:a— L. z:a.xz(yz)
C(a=B—=7)—=(a—=B)—a—y

Example

[x:a=B—=72 [z:0]) [y:a—=BP [z:a]

xz 1 By yz:pB

xz(yz) : vy
Az:ae.xz(yz) » a—y

1

Ay:a—BAziaxz(yz) : (a—F)—a—y

Ax:a— =y \y:a—pAz:a.xz(yz) : (a—=F—y)—=(a—=B)—a—y
Exercise: Give the derivation that corresponds to

Axy—=e Ny (y—=e)—ey(Az.y x) : (y—e)—=((y—e)—e)—e

Flag style deductions

The Fitch style (also: flag style) presentation of A—.

G W NN =

XxioM:o—T1

abs-rule

abs, 1, 4

~N O oW N

8

M:oc—rT1

N:o

MN : 1

app-rule

app, 3,6

Example

X a—P—y
ya—p

Az:axz(yz) : a—y

Ay:a—=BAzaxz(y z) : (a—=f)—a—y

© 00 N O 0 W N =

Ax:a— =y \y:a—=B.Az:axz(y z) : (a—=L—=v)—=(a—8)—a—y

Computation

» [-reduction: (Ax:o.M)P —g M[x := P]

Cut-elimination

Cut-eliminationin minimal logic = S-reduction in A—.

[0]!
D,
T D>
1 =
o—T o
T
[x: o]t
D,
M: T 1 D,
A\x:o.M:o—T1 P:o

(Ax:a.M)P : T

D>
o
Dy
.
D>
P:o
Dy
M[x:=P]:T

Example

Proof of A~A—B,(A—B)—AF B

[A]} A-A—B
[A' A=A—=B [A]* A—B
AL ASB B
B (A—=B)—A A—B
A—B A
B

It contains a cut: a —-i directly followed by an —-e.

Example ctd

Proof of A~A—B,(A—B)— A B after reduction

[A} A-A—B
[A' A-A—B [A]* A—B
[A]Y A—B B
B (A—B)—A A—B
(A—=B)—A A—B A A—A—
A A—B

Example ctd

Proof of A~A—B,(A—B)—AF B with term information.

[x: A p: A-A—=B

[y :A' p: A-A=B [x: Al* px:A—B
[y : A* py:A—=B pxx:B
pyy:B qg:(A—>B)—A M:Apxx:A—=B
Ay:Apyy: A—=B g(Ax:Apxx): A

(A\y:Apyy)g(Ax:Apxx)): B

Term contains a f-redex: (Ax:A.pxx) (g(Ax:A.px x))

Example ctd

Reduced proof of A-A—B, (A—B)—AF B with term info.

[x : A]1 p: A—>A—B

[x : A]1 p: A—>A—B [x: A]1 px:A—=B
[X:A]1 px:A—=B pxx:B
pxx:B q: (A—=B)—A Ax:A.pxx: A—=B
q:(A—>B)—A Ax:A.pxx: A—B g(Ax:A.pxx): A p: A—-A—B
g(Ax:A.pxx): A p(g(Ax:A.pxx)) : A=B

p(g(Ax:A.pxx))(g(Ax:A.pxx)) : B

Extension with other connectives: STT with product types x
(proposition logic with conjunction A)

Fr=M:oxr FrN-M:oxrt FrEP:clTHQ:T
r-mM:o MemM: T Fr=(P,Q):o0xr

With reduction rules

