Proving with Computer Assistance

Herman Geuvers

Lecture Simple Type Theory a la Curry: assigning types to untyped
terms, principal type algorithm

Overview of todays lecture

v

Recap of Simple Type Theory a la Church

v

Recap of Untyped lambda calculus

v

Simple Type Theory a la Curry (versus a la Church)
A programmers view on type theory

» Principal Types algorithm
» Properties of Simple Type Theory.

Recap: Simple type theory a la Church.

Formulation with contexts to declare the free variables:

X1:01,X0 1 02,...,Xp . 0p

is a context, usually denoted by I'.
Derivation rules of A— (a la Church):

xo el rEM:o—=7THN:o NxokEP:1
Hx:0 = MN: 7 = Ax0o.P:o—T1

[y, M : o if there is a derivation using these rules with
conclusion T M : o

Recap: Formulas-as-Types (Curry, Howard)

There are two readings of a judgement M : o

1. term as algorithm/program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o
» There is a one-to-one correspondence:
typable terms in A— =~ derivations in minimal proposition
logic
> X1 :T1,X0:To,...,Xn:Tn b M : 0o can be read as
M is a proof of o from the assumptions 7,72, . .., 7.

Recap: Example

[a=B—=91 [[a=p8] [a]*
B—y B
Y
1
oy
B —
(a—=p)—a—y

(a—=p—=7y)=(a—p)—a—y

Axia—B—=y. Ay a— L. z:a.xz(yz)
C(a—=B—=7)—=(a—=B)—a—y

Example
Find a term M of type ((A—B)—A)—(A—A—B)—A, and give a
typing derivation that shows this typing.

Untyped A-calculus

Untyped A-calculus

A = Var | (AN) | (AVar.A)

Examples:
-K:=Axy.x
-S:=XMyzxz(yz)
- W= AXXX
-Qi=ww

Q—)ﬁQ

Untyped A-calculus

Untyped A-calculus is Turing complete
Its power lies in the fact that you can solve recursive equations:
Is there a term M such that

Mx =g x M x?
Is there a term M such that

M x =g if (Zero x) then 1 else Mult x (M (Pred x))?

Yes, because we have a fixed point combinator:
=Y = ML.(Ax.F(xx))(Ax.f(x x))
Property:

Yf=5f(Yf)

Untyped A-calculus (ctd.)
Solving recursive equations using the fixed point combinator:
» For M a A-term, Y M is a fixed point of M, that is

M(YM)=3YM

P> As a consequence, a question like “Is there a A-term P such
that Px =g x P x P (for all x)7?" can be answered affirmative:

Why do we want types?

Types give a (partial) specification

Typed terms can’t go wrong (Milner)

Subject Reduction property: If M : Aand M —3 N, then
N : A.

Typed terms always terminate

The type checking algorithm detects (simple) mistakes

The compiler should compute the type information for us!
(Why would the programmer have to type all that?)

This is called a type assignment system, or also typing a la
Curry:

For M an untyped term, the type system assigns a type o to
M (or not)

Simple Type Theory a la Church and a la Curry

A— (a la Church):

xoel rN-M:o—=7TEN:o MNxokEP:1T
N=x:0 M= MN:T N Axio.P:o—r1

A— (a la Curry):

xo el rN-=M:0—=-7THN:o xokEP:1
lEx:0o = MN: 7 M= Ax.P:o—T1

Typed Terms versus Type Assignment:

> With typed terms also called typing a la Church, we have
terms with type information in the A-abstraction

AX DX D a—Q

As a consequence:
» Terms have unique types,
» The type is directly computed from the type info in the
variables.
> With typed assignment also called typing a la Curry, we assign
types to untyped A-terms

AX.X I a—Q

As a consequence:

» Terms do not have unique types,
» A principal type can be computed using unification.

Examples

» Typed Terms:
Ax oy ¢ (B—a)—ay(Az : B.x)

has only the type a—((f—a)—a)—a

> Type Assignment:
AXAy.y(Az.x)

can be assigned the types
> a—((f—a)—a)—a
> (a—a)=((f—a—a)—y)—=y
> ..

with a—((8—«a)—)—y being the principal type

Example derivation

Ax.Ay.y(Az.x) can be assigned the type
(a—a)—=((B—a—a)—y)—y in A— a la Curry.

Connection between Church and Curry typed A—

Definition The erasure map | — | from A— a la Church to A— a la
Curry is defined by erasing all type information.

x| = x
IMN| = [M[|N|
IAx :o.M| = Ax.|M|

So, e.g.

IAx Ay (B—a)—=ay(Az: B.x)| = AxAy.y(Az.x)

Theorem If = M : o in A— a la Church, then ' = [M|: 0 in A\—
a la Curry.

Theorem If = P : o in A= a la Curry, then there is an M such
that [M|=Pand ' M : o in A= a la Church.

Connection between Church and Curry typed A—

Definition The erasure map | — | from A— a la Church to A— a la
Curry is defined by erasing all type information.

x| = x
IMN| = [M[|N]
IAx:o.M| = Ix.|M|

Theorem If [= P : o in A= a la Curry, then there is an M such
that [M|=Pand ' M : o in A= a la Church.
Proof: by induction on derivations.

xo el rMN-=M:o—=7T+N:o MNxokFP:T
lEx:0 = MN Tt N Ax.P:o—oT

Example of computing a principal type

Ax.Ay.y (Az.y x)
1. Assign type vars to all variables: x: a,y : 3,z :7:

)\xa.)\yﬂ.yﬁ()\ﬂ.yﬁxo‘)

2. Assign type vars to all applicative subterms: y x and
y(Az.y x): ,_/6\
AXENP . yP (A7 yPx®)

&€
3. Generate equations between types, necessary for the term to

be typable:s = a—d B = (y—=d)—e
4. Find a most general unifier (a substitution) for the type vars
that solves the equations: a := y—e, §:= (y—e)—e, d:=¢

5. The principal type of Ax.Ay.y(Az.yx) is now

(y—=e)—=((y—e)—e)—e

Example of computing a principal type (Il)

AXAy.x (y x)

Steps in computing the most general unifier

AXAY.X Y X

Which of these terms is typable?

> My = Ax.x(Ay.yx)

> My = Ax.Ay.x(xy)

> Ms = Ax.\y.x(Az.y x)

Poll:

A M; is not typable, My and Mjs are typable.
B M, is not typable, M; and M5 are typable.
C Ms is not typable, My and M, are typable.

Principal Types: Definitions

» A type substitution (or just substitution) is a map S from type
variables to types with a finite domain and such that variables
that occur in the range of S are not in the domain of S.

» We write S as [a1 1= 01,...,qn 1= 0p] with a; ¢ o (Vi,)).

» We can compose substitutions: S; T. We write 7 S for
substitution S applied to 7. (So we have 7(S; T) = (75)T.)

» A unifier of the types o and 7 is a substitution that “makes
o =7 hold, i.e. an S suchthat S =75
» A most general unifier (or mgu) of the types o and 7 is the
“simplest substitution” that makes o = 7 hold, i.e. an S such
that
> o5=75
» for all substitutions T such that 0 T =7 T there is a
substitution R such that T = S; R.
All these notions generalize to lists of equations
(01 =T1,...,0, = Tp) instead of a single equation o = 7.

Computability of most general unifiers

There is an algorithm U that, given a list (01 = 71,...,0, = Tp)
outputs

» A most general unifier of (67 = 11,...,0, = 7,) if these types

can be unified.

» “Fail" if (o1 =71,...,0, = Th) can't be unified.

> Ula=a,...,on=m1p)) = U({(02="12,...,00 = Tn)).

» U{la=m11,...,00=1pn)) = “Fail" if « € FV(11), 11 # .

» U{o1=a,...,on=1n)) = U({a=01,...,00=Tn))

» U{la="11,...,00=1n)) = [a:= V(11), V], if @ ¢ FV(11),

where V' abbreviates
U((oz]a := 1] = mofa :=71), ..., on]a := 1] = Tala = 71])).
> U((p—v =p=¢,....00="Ta)) =
U{p=pv==¢....,00="n))

Principal type

Definition ¢ is a principal type for the untyped closed A-term M if
> - M:oin A— ala Curry

» for all types 7, if F M : 7, then 7 = ¢ S for some substitution
S.

Theorem: Principal Types

There is an algorithm PT that, when given an (untyped) closed
A-term M, outputs

» A principal type o such that - M : ¢ in A— a la Curry.
> “Fail” if M is not typable in A— a la Curry.

NB. The definitions and theory can be immediately extended to
deal with open terms.

Typical problems one would like to have an algorithm for

F M :o? Type Checking Problem TCP
FM:7 Type Synthesis Problem TSP
F7:0 Type Inhabitation Problem TIP

For A—, all these problems are decidable,
both for the Curry style and for the Church style presentation
(also if we ask them in a context I').

» TCP and TSP are (as usual) equivalent: To solve MN : o, one
has to solve N :? (and if this gives answer 7, solve M : 7—0).

» For Curry systems, TCP and TSP soon become undecidable
beyond A—.

» TIP is undecidable for most extensions of A—, as it
corresponds to provability in some logic.

