Proving with Computer Assistance

Herman Geuvers

Lecture Simple Type Theory a la Curry: assigning types to untyped terms, principal type algorithm

Overview of todays lecture

- Recap of Simple Type Theory a la Church
- Recap of Untyped lambda calculus
- Simple Type Theory a la Curry (versus a la Church)
 A programmers view on type theory
- Principal Types algorithm
- Properties of Simple Type Theory.

Recap: Simple type theory a la Church.

Formulation with contexts to declare the free variables:

 x_1 : σ_1, x_2 : σ_2, \ldots, x_n : σ_n

is a context, usually denoted by Γ . Derivation rules of $\lambda \rightarrow$ (à la Church):

$x:\sigma\in\Gamma$	$\Gamma \vdash M : \sigma \rightarrow \tau \ \Gamma \vdash N : \sigma$	$\Gamma, x: \sigma \vdash P : \tau$
$\overline{\Gamma \vdash \mathbf{x} : \sigma}$	$\Gamma \vdash MN : \tau$	$\Gamma \vdash \lambda x: \sigma. P : \sigma \rightarrow \tau$

 $\Gamma \vdash_{\lambda \to} M : \sigma$ if there is a derivation using these rules with conclusion $\Gamma \vdash M : \sigma$

Recap: Formulas-as-Types (Curry, Howard)

There are two readings of a judgement $M : \sigma$

- 1. term as algorithm/program, type as specification: M is a function of type σ
- 2. type as a proposition, term as its proof: *M* is a proof of the proposition σ
- ► There is a one-to-one correspondence: typable terms in $\lambda \rightarrow \simeq$ derivations in minimal proposition logic
- $x_1 : \tau_1, x_2 : \tau_2, \ldots, x_n : \tau_n \vdash M : \sigma$ can be read as M is a proof of σ from the assumptions $\tau_1, \tau_2, \ldots, \tau_n$.

Recap: Example

 $\lambda x: \alpha \to \beta \to \gamma. \lambda y: \alpha \to \beta. \lambda z: \alpha. xz(yz)$: $(\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma$

Example

Find a term *M* of type $((A \rightarrow B) \rightarrow A) \rightarrow (A \rightarrow A \rightarrow B) \rightarrow A$, and give a typing derivation that shows this typing.

Untyped λ -calculus

Untyped λ -calculus

$$\Lambda ::= \mathsf{Var} \mid (\Lambda \Lambda) \mid (\lambda \mathsf{Var}.\Lambda)$$

Examples:

- $\mathbf{K} := \lambda x y . x$ - $\mathbf{S} := \lambda x y z . x z(y z)$ - $\omega := \lambda x . x x$
- $\Omega := \omega \, \omega$

$$\Omega
ightarrow_eta \Omega$$

Untyped λ -calculus

Untyped λ -calculus is Turing complete Its power lies in the fact that you can solve recursive equations: Is there a term *M* such that

$$M x =_{\beta} x M x?$$

Is there a term M such that

$$M x =_{\beta}$$
if (Zero x) **then** 1 **else** Mult x (M (Pred x))?

Yes, because we have a fixed point combinator: - $\mathbf{Y} := \lambda f.(\lambda x.f(x x))(\lambda x.f(x x))$ Property:

$$\mathbf{Y} f =_{\beta} f(\mathbf{Y} f)$$

Untyped λ -calculus (ctd.)

Solving recursive equations using the fixed point combinator:

For M a λ -term, **Y** M is a fixed point of M, that is

$$M(\mathbf{Y} M) =_{\beta} \mathbf{Y} M$$

As a consequence, a question like "Is there a λ -term P such that $P =_{\beta} x P x P$ (for all x)?" can be answered affirmative:

Why do we want types?

- Types give a (partial) specification
- ► Typed terms can't go wrong (Milner) Subject Reduction property: If M : A and M → B N, then N : A.
- Typed terms always terminate
- The type checking algorithm detects (simple) mistakes But:
 - The compiler should compute the type information for us! (Why would the programmer have to type all that?)
 - This is called a type assignment system, or also typing à la Curry:
 - For *M* an untyped term, the type system assigns a type σ to *M* (or not)

Simple Type Theory à la Church and à la Curry

 $\begin{array}{l} \lambda \rightarrow \text{ (à la Church):} \\ \\ \frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} & \frac{\Gamma \vdash M:\sigma \rightarrow \tau \ \Gamma \vdash N:\sigma}{\Gamma \vdash MN:\tau} & \frac{\Gamma, x:\sigma \vdash P:\tau}{\Gamma \vdash \lambda x:\sigma.P:\sigma \rightarrow \tau} \\ \\ \lambda \rightarrow \text{ (à la Curry):} \end{array}$

 $\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} \qquad \frac{\Gamma \vdash M: \sigma \to \tau \ \Gamma \vdash N:\sigma}{\Gamma \vdash MN:\tau} \qquad \frac{\Gamma, x:\sigma \vdash P:\tau}{\Gamma \vdash \lambda x.P:\sigma \to \tau}$

Typed Terms versus Type Assignment:

With typed terms also called typing à la Church, we have terms with type information in the λ-abstraction

 $\lambda x : \alpha . x : \alpha \rightarrow \alpha$

As a consequence:

- Terms have unique types,
- The type is directly computed from the type info in the variables.
- With typed assignment also called typing à la Curry, we assign types to untyped λ-terms

$$\lambda x.x: \alpha \rightarrow \alpha$$

As a consequence:

- Terms do not have unique types,
- A principal type can be computed using unification.

Examples

Typed Terms:

$$\lambda x : \alpha . \lambda y : (\beta \rightarrow \alpha) \rightarrow \alpha . y (\lambda z : \beta . x)$$

has only the type $\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha$

Type Assignment:

$$\lambda x.\lambda y.y(\lambda z.x)$$

can be assigned the types

with $\alpha \rightarrow ((\beta \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$ being the principal type

Example derivation

 $\lambda x.\lambda y.y(\lambda z.x)$ can be assigned the type $(\alpha \rightarrow \alpha) \rightarrow ((\beta \rightarrow \alpha \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$ in $\lambda \rightarrow$ a la Curry.

Connection between Church and Curry typed $\lambda \rightarrow$

Definition The erasure map |-| from $\lambda \rightarrow a$ la Church to $\lambda \rightarrow a$ la Curry is defined by erasing all type information.

$$\begin{aligned} |x| &:= x\\ |M N| &:= |M| |N|\\ |\lambda x : \sigma . M| &:= \lambda x . |M| \end{aligned}$$

So, e.g.

$$|\lambda x: \alpha . \lambda y: (\beta \rightarrow \alpha) \rightarrow \alpha . y(\lambda z: \beta . x)| = \lambda x . \lambda y . y(\lambda z. x)$$

Theorem If $\Gamma \vdash M : \sigma$ in $\lambda \rightarrow$ à la Church, then $\Gamma \vdash |M| : \sigma$ in $\lambda \rightarrow$ à la Curry. Theorem If $\Gamma \vdash P : \sigma$ in $\lambda \rightarrow$ à la Curry, then there is an M such that $|M| \equiv P$ and $\Gamma \vdash M : \sigma$ in $\lambda \rightarrow$ à la Church.

Connection between Church and Curry typed $\lambda \rightarrow$

Definition The erasure map |-| from $\lambda \rightarrow a$ la Church to $\lambda \rightarrow a$ la Curry is defined by erasing all type information.

$$|x| := x$$
$$|M N| := |M| |N|$$
$$|\lambda x : \sigma . M| := \lambda x . |M|$$

Theorem If $\Gamma \vdash P : \sigma$ in $\lambda \rightarrow à$ la Curry, then there is an M such that $|M| \equiv P$ and $\Gamma \vdash M : \sigma$ in $\lambda \rightarrow à$ la Church. Proof: by induction on derivations.

$$\frac{x:\sigma \in \Gamma}{\Gamma \vdash x:\sigma} \qquad \frac{\Gamma \vdash M: \sigma \to \tau \ \Gamma \vdash N:\sigma}{\Gamma \vdash MN:\tau} \qquad \frac{\Gamma, x:\sigma \vdash P:\tau}{\Gamma \vdash \lambda x.P:\sigma \to \tau}$$

Example of computing a principal type

 $\lambda x. \lambda y. y (\lambda z. y x)$ 1. Assign type vars to all variables: $x : \alpha, y : \beta, z : \gamma$:

$$\lambda x^{\alpha} . \lambda y^{\beta} . y^{\beta} (\lambda z^{\gamma} . y^{\beta} x^{\alpha})$$

2. Assign type vars to all applicative subterms: y x and $y(\lambda z.y x)$: $\lambda x^{\alpha} . \lambda y^{\beta} . \underbrace{y^{\beta}(\lambda z^{\gamma}, y^{\beta} x^{\alpha})}_{\delta}$

- 3. Generate equations between types, necessary for the term to be typable: $\beta = \alpha \rightarrow \delta$ $\beta = (\gamma \rightarrow \delta) \rightarrow \varepsilon$
- 4. Find a most general unifier (a substitution) for the type vars that solves the equations: $\alpha := \gamma \rightarrow \varepsilon$, $\beta := (\gamma \rightarrow \varepsilon) \rightarrow \varepsilon$, $\delta := \varepsilon$
- 5. The principal type of $\lambda x.\lambda y.y(\lambda z.yx)$ is now

$$(\gamma \rightarrow \varepsilon) \rightarrow ((\gamma \rightarrow \varepsilon) \rightarrow \varepsilon) \rightarrow \varepsilon$$

Example of computing a principal type (II)

 $\lambda x.\lambda y.x(yx)$

Steps in computing the most general unifier

 $\lambda x.\lambda y.x y x$

Which of these terms is typable?

$$M_1 := \lambda x. x (\lambda y. y x)$$

$$M_2 := \lambda x \cdot \lambda y \cdot x (x y)$$

•
$$M_3 := \lambda x \cdot \lambda y \cdot x (\lambda z \cdot y \cdot x)$$

Poll:

A M_1 is not typable, M_2 and M_3 are typable.

- B M_2 is not typable, M_1 and M_3 are typable.
- C M_3 is not typable, M_1 and M_2 are typable.

Principal Types: Definitions

- ► A type substitution (or just substitution) is a map S from type variables to types with a finite domain and such that variables that occur in the range of S are not in the domain of S.
- We write S as $[\alpha_1 := \sigma_1, \ldots, \alpha_n := \sigma_n]$ with $\alpha_i \notin \sigma_j \ (\forall i, j)$.
- We can compose substitutions: S; T. We write τ S for substitution S applied to τ. (So we have τ (S; T) = (τ S)T.)
- A unifier of the types σ and τ is a substitution that "makes σ = τ hold, i.e. an S such that σ S = τ S
- A most general unifier (or mgu) of the types σ and τ is the "simplest substitution" that makes σ = τ hold, i.e. an S such that

 $\blacktriangleright \ \sigma S = \tau S$

• for all substitutions T such that $\sigma T = \tau T$ there is a substitution R such that T = S; R.

All these notions generalize to lists of equations $\langle \sigma_1 = \tau_1, \dots, \sigma_n = \tau_n \rangle$ instead of a single equation $\sigma = \tau$.

Computability of most general unifiers

There is an algorithm U that, given a list $\langle \sigma_1 = \tau_1, \ldots, \sigma_n = \tau_n \rangle$ outputs

- A most general unifier of ⟨σ₁ = τ₁,..., σ_n = τ_n⟩ if these types can be unified.
- "Fail" if $\langle \sigma_1 = \tau_1, \ldots, \sigma_n = \tau_n \rangle$ can't be unified.

$$U(\langle \alpha = \alpha, \ldots, \sigma_n = \tau_n \rangle) := U(\langle \sigma_2 = \tau_2, \ldots, \sigma_n = \tau_n \rangle).$$

• $U(\langle \alpha = \tau_1, \ldots, \sigma_n = \tau_n \rangle) :=$ "Fail" if $\alpha \in FV(\tau_1), \tau_1 \neq \alpha$.

$$\blacktriangleright U(\langle \sigma_1 = \alpha, \ldots, \sigma_n = \tau_n \rangle) := U(\langle \alpha = \sigma_1, \ldots, \sigma_n = \tau_n \rangle)$$

► $U(\langle \alpha = \tau_1, \dots, \sigma_n = \tau_n \rangle) := [\alpha := V(\tau_1), V]$, if $\alpha \notin FV(\tau_1)$, where V abbreviates

$$U(\langle \sigma_2[\alpha := \tau_1] = \tau_2[\alpha := \tau_1], \dots, \sigma_n[\alpha := \tau_1] = \tau_n[\alpha := \tau_1] \rangle).$$

$$U(\langle \mu \to \nu = \rho \to \xi, \dots, \sigma_n = \tau_n \rangle) := \\ U(\langle \mu = \rho, \nu = \xi, \dots, \sigma_n = \tau_n \rangle)$$

Principal type

Definition σ is a principal type for the untyped closed λ -term M if

$$\blacktriangleright \vdash M : \sigma \text{ in } \lambda \rightarrow a$$
 la Curry

• for all types τ , if $\vdash M : \tau$, then $\tau = \sigma S$ for some substitution S.

There is an algorithm PT that, when given an (untyped) closed λ -term M, outputs

- A principal type σ such that $\vdash M : \sigma$ in $\lambda \rightarrow a$ la Curry.
- "Fail" if *M* is not typable in $\lambda \rightarrow$ à la Curry.

NB. The definitions and theory can be immediately extended to deal with open terms.

Typical problems one would like to have an algorithm for

$\vdash M : \sigma$?	Type Checking Problem	ТСР
⊢ <i>M</i> :?	Type Synthesis Problem	TSP
\vdash ? : σ	Type Inhabitation Problem	TIP

For $\lambda \rightarrow$, all these problems are decidable, both for the Curry style and for the Church style presentation (also if we ask them in a context Γ).

- ► TCP and TSP are (as usual) equivalent: To solve $MN : \sigma$, one has to solve N :? (and if this gives answer τ , solve $M : \tau \rightarrow \sigma$).
- For Curry systems, TCP and TSP soon become undecidable beyond λ→.
- ► TIP is undecidable for most extensions of *λ*→, as it corresponds to provability in some logic.