
Proving with Computer Assistance

Herman Geuvers

Lecture Simple Type Theory a la Curry: assigning types to untyped
terms, principal type algorithm

Overview of todays lecture

▶ Recap of Simple Type Theory a la Church

▶ Recap of Untyped lambda calculus

▶ Simple Type Theory a la Curry (versus a la Church)
A programmers view on type theory

▶ Principal Types algorithm

▶ Properties of Simple Type Theory.

Recap: Simple type theory a la Church.

Formulation with contexts to declare the free variables:

x1 : σ1, x2 : σ2, . . . , xn : σn

is a context, usually denoted by Γ.
Derivation rules of λ→ (à la Church):

x :σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x :σ ⊢ P : τ

Γ ⊢ λx :σ.P : σ→τ

Γ ⊢λ→ M : σ if there is a derivation using these rules with
conclusion Γ ⊢ M : σ

Recap: Formulas-as-Types (Curry, Howard)

There are two readings of a judgement M : σ

1. term as algorithm/program, type as specification:
M is a function of type σ

2. type as a proposition, term as its proof:
M is a proof of the proposition σ

▶ There is a one-to-one correspondence:

typable terms in λ→ ≃ derivations in minimal proposition
logic

▶ x1 : τ1, x2 : τ2, . . . , xn : τn ⊢ M : σ can be read as
M is a proof of σ from the assumptions τ1, τ2, . . . , τn.

Recap: Example

[α→β→γ]3 [α]1

β→γ

[α→β]2 [α]1

β

γ
1

α→γ
2

(α→β)→α→γ
3

(α→β→γ)→(α→β)→α→γ

≃ λx :α→β→γ.λy :α→β.λz :α.xz(yz)
: (α→β→γ)→(α→β)→α→γ

Example
Find a term M of type ((A→B)→A)→(A→A→B)→A, and give a
typing derivation that shows this typing.

Untyped λ-calculus

Untyped λ-calculus

Λ ::= Var | (Λ Λ) | (λVar.Λ)

Examples:
- K := λx y .x
- S := λx y z .x z(y z)
- ω := λx .x x
- Ω := ω ω

Ω →β Ω

Untyped λ-calculus

Untyped λ-calculus is Turing complete
Its power lies in the fact that you can solve recursive equations:
Is there a term M such that

M x =β x M x?

Is there a term M such that

M x =β if (Zero x) then 1 elseMult x (M (Pred x))?

Yes, because we have a fixed point combinator:
- Y := λf .(λx .f (x x))(λx .f (x x))
Property:

Y f =β f (Y f)

Untyped λ-calculus (ctd.)
Solving recursive equations using the fixed point combinator:
▶ For M a λ-term, YM is a fixed point of M, that is

M (YM) =β YM

▶ As a consequence, a question like “Is there a λ-term P such
that P x =β x P x P (for all x)?” can be answered affirmative:

Why do we want types?

▶ Types give a (partial) specification

▶ Typed terms can’t go wrong (Milner)
Subject Reduction property: If M : A and M ↠β N, then
N : A.

▶ Typed terms always terminate

▶ The type checking algorithm detects (simple) mistakes

But:

▶ The compiler should compute the type information for us!
(Why would the programmer have to type all that?)

▶ This is called a type assignment system, or also typing à la
Curry:

▶ For M an untyped term, the type system assigns a type σ to
M (or not)

Simple Type Theory à la Church and à la Curry

λ→ (à la Church):

x :σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x :σ ⊢ P : τ

Γ ⊢ λx :σ.P : σ→τ

λ→ (à la Curry):

x :σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x :σ ⊢ P : τ

Γ ⊢ λx .P : σ→τ

Typed Terms versus Type Assignment:

▶ With typed terms also called typing à la Church, we have
terms with type information in the λ-abstraction

λx : α.x : α→α

As a consequence:
▶ Terms have unique types,
▶ The type is directly computed from the type info in the

variables.

▶ With typed assignment also called typing à la Curry, we assign
types to untyped λ-terms

λx .x : α→α

As a consequence:
▶ Terms do not have unique types,
▶ A principal type can be computed using unification.

Examples

▶ Typed Terms:

λx : α.λy : (β→α)→α.y(λz : β.x)

has only the type α→((β→α)→α)→α

▶ Type Assignment:
λx .λy .y(λz .x)

can be assigned the types
▶ α→((β→α)→α)→α
▶ (α→α)→((β→α→α)→γ)→γ
▶ . . .

with α→((β→α)→γ)→γ being the principal type

Example derivation
λx .λy .y(λz .x) can be assigned the type
(α→α)→((β→α→α)→γ)→γ in λ→ a la Curry.

Connection between Church and Curry typed λ→
Definition The erasure map | − | from λ→ à la Church to λ→ à la
Curry is defined by erasing all type information.

|x | := x

|M N| := |M| |N|
|λx : σ.M| := λx .|M|

So, e.g.

|λx : α.λy : (β→α)→α.y(λz : β.x)| = λx .λy .y(λz .x)

Theorem If Γ ⊢ M : σ in λ→ à la Church, then Γ ⊢ |M| : σ in λ→
à la Curry.
Theorem If Γ ⊢ P : σ in λ→ à la Curry, then there is an M such
that |M| ≡ P and Γ ⊢ M : σ in λ→ à la Church.

Connection between Church and Curry typed λ→

Definition The erasure map | − | from λ→ à la Church to λ→ à la
Curry is defined by erasing all type information.

|x | := x

|M N| := |M| |N|
|λx : σ.M| := λx .|M|

Theorem If Γ ⊢ P : σ in λ→ à la Curry, then there is an M such
that |M| ≡ P and Γ ⊢ M : σ in λ→ à la Church.
Proof: by induction on derivations.

x :σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x :σ ⊢ P : τ

Γ ⊢ λx .P : σ→τ

Example of computing a principal type

λx .λy .y (λz .y x)
1. Assign type vars to all variables: x : α, y : β, z : γ:

λxα.λyβ.yβ(λzγ .yβxα)

2. Assign type vars to all applicative subterms: y x and
y(λz .y x):

λxα.λyβ. yβ(λzγ .

δ︷ ︸︸ ︷
yβxα)︸ ︷︷ ︸

ε

3. Generate equations between types, necessary for the term to
be typable:β = α→δ β = (γ→δ)→ε

4. Find a most general unifier (a substitution) for the type vars
that solves the equations: α := γ→ε, β := (γ→ε)→ε, δ := ε

5. The principal type of λx .λy .y(λz .yx) is now

(γ→ε)→((γ→ε)→ε)→ε

Example of computing a principal type (II)

λx .λy .x (y x)

Steps in computing the most general unifier

λx .λy .x y x

Which of these terms is typable?
▶ M1 := λx .x (λy .y x)
▶ M2 := λx .λy .x (x y)
▶ M3 := λx .λy .x (λz .y x)

Poll:

A M1 is not typable, M2 and M3 are typable.
B M2 is not typable, M1 and M3 are typable.
C M3 is not typable, M1 and M2 are typable.

Principal Types: Definitions

▶ A type substitution (or just substitution) is a map S from type
variables to types with a finite domain and such that variables
that occur in the range of S are not in the domain of S .

▶ We write S as [α1 := σ1, . . . , αn := σn] with αi /∈ σj (∀i , j).
▶ We can compose substitutions: S ;T . We write τ S for

substitution S applied to τ . (So we have τ (S ;T) = (τ S)T .)

▶ A unifier of the types σ and τ is a substitution that “makes
σ = τ hold, i.e. an S such that σ S = τ S

▶ A most general unifier (or mgu) of the types σ and τ is the
“simplest substitution” that makes σ = τ hold, i.e. an S such
that
▶ σ S = τ S
▶ for all substitutions T such that σT = τ T there is a

substitution R such that T = S ;R.

All these notions generalize to lists of equations
⟨σ1 = τ1, . . . , σn = τn⟩ instead of a single equation σ = τ .

Computability of most general unifiers

There is an algorithm U that, given a list ⟨σ1 = τ1, . . . , σn = τn⟩
outputs

▶ A most general unifier of ⟨σ1 = τ1, . . . , σn = τn⟩ if these types
can be unified.

▶ “Fail” if ⟨σ1 = τ1, . . . , σn = τn⟩ can’t be unified.

▶ U(⟨α = α, . . . , σn = τn⟩) := U(⟨σ2 = τ2, . . . , σn = τn⟩).
▶ U(⟨α = τ1, . . . , σn = τn⟩) := “Fail” if α ∈ FV(τ1), τ1 ̸= α.

▶ U(⟨σ1 = α, . . . , σn = τn⟩) := U(⟨α = σ1, . . . , σn = τn⟩)
▶ U(⟨α = τ1, . . . , σn = τn⟩) := [α := V (τ1),V], if α /∈ FV(τ1),

where V abbreviates
U(⟨σ2[α := τ1] = τ2[α := τ1], . . . , σn[α := τ1] = τn[α := τ1]⟩).

▶ U(⟨µ→ν = ρ→ξ, . . . , σn = τn⟩) :=
U(⟨µ = ρ, ν = ξ, . . . , σn = τn⟩)

Principal type

Definition σ is a principal type for the untyped closed λ-term M if

▶ ⊢ M : σ in λ→ à la Curry

▶ for all types τ , if ⊢ M : τ , then τ = σ S for some substitution
S .

Theorem: Principal Types

There is an algorithm PT that, when given an (untyped) closed
λ-term M, outputs

▶ A principal type σ such that ⊢ M : σ in λ→ à la Curry.

▶ “Fail” if M is not typable in λ→ à la Curry.

NB. The definitions and theory can be immediately extended to
deal with open terms.

Typical problems one would like to have an algorithm for

⊢ M : σ? Type Checking Problem TCP
⊢ M : ? Type Synthesis Problem TSP
⊢? : σ Type Inhabitation Problem TIP

For λ→, all these problems are decidable,
both for the Curry style and for the Church style presentation
(also if we ask them in a context Γ).

▶ TCP and TSP are (as usual) equivalent: To solve MN : σ, one
has to solve N :? (and if this gives answer τ , solve M : τ→σ).

▶ For Curry systems, TCP and TSP soon become undecidable
beyond λ→.

▶ TIP is undecidable for most extensions of λ→, as it
corresponds to provability in some logic.

