
Proving with Computer Assistance

Lecture Dependent Type Theory λP

Herman Geuvers
For the slides, thanks to: Freek Wiedijk



where we are in the course

recap

propositional logic ↔ simple type theory
λ→

predicate logic ↔ type theory with dependent types
λP

2nd order propositional logic ↔ polymorphic type theory
λ2

higher order predicate logic ↔ calculus of constructions
λC



the main difference between λ→ and λP

A → B

‘type of functions from A to B’

Πx : A.B

‘type of functions from A to B’ dependent product
dependent function type

type of function value B now can depend on function argument x
arrow type becomes a special case



syntax

λP
• two sorts
∗, □

• variables
x , y , z , . . .

• function application
MN

• function abstraction
λx : A.M

• dependent product
Πx : A.M



Coq syntax versus λP syntax

∗ ↔ Set

∗ ↔ Prop

□ ↔ Type

x ↔ x

M N ↔ M N

λx : A.M ↔ fun x:A => M

Πx : A.M ↔ forall x:A, M

λP does not make the distinction between Set and Prop



pseudo-terms versus terms

any expression according to the λP grammar is called a
pseudo-term

(□ ∗)
λn : nat. λx : n. x

(λx : nat. x x) (λx : nat. x x)

if also all types are okay, then the expression is called a term

□
λn : nat. nat

(λf : (Πm : nat. nat). λx : nat. f x) (λn : nat. n)
(λf : nat → nat. λx : nat. f x) (λn : nat. n)



contexts and judgments

a judgment has the form Γ ⊢ M : N
with Γ a context and M and N terms

a context Γ is a list of variable declarations

a variable declaration has the form x : M
with x a variable name and M a term (usually a type)

A : ∗, P : (Πx : A. ∗), a : A ⊢ (Πw : P a. ∗) : □
A : ∗, P : A → ∗, a : A ⊢ (P a) → ∗ : □



the seven rules of λP

• one rule for each kind of term
▶ axiom rule (for the sorts)
▶ variable rule
▶ product rule
▶ abstraction rule
▶ application rule

• two more rules
▶ weakening rule (for the contexts)
▶ conversion rule



rule 1: axiom

⊢ ∗ : □

gives the type of the sort ∗
the only rule with no premises!



rules 2 and 3: variable and weakening

in these rules s is either ∗ or □

Γ ⊢ A : s

Γ, x : A ⊢ x : A

gives the type of the variable x

if the variable is not the last in the context we need the weakening
rule

Γ ⊢ A : B Γ ⊢ C : s

Γ, x : C ⊢ A : B



rule 4: product

Γ ⊢ A : ∗ Γ ⊢ B : s

Γ ⊢ A → B : s

Γ ⊢ A : ∗ Γ, x : A ⊢ B : s

Γ ⊢ Πx : A.B : s

gives the type of a dependent product



rule 5: abstraction

Γ, x : A ⊢ M : B

Γ ⊢ λx : A.M : A → B

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B

gives the type of a function abstraction



rule 6: application

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B

gives the type of a function application



rule 6: application

Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x := N]

gives the type of a function application



rule 7: conversion

Γ ⊢ A : B Γ ⊢ B ′ : s

Γ ⊢ A : B ′ with B =β B ′

is needed to make everything work



reduction and convertibility

• step

. . . ((λx : A.M)N) . . . →β . . . (M[x := N]) . . .

• reduction →→β

zero or more steps

• convertibility =β

smallest equivalence relation



axiom, application, abstraction, product

cheat sheet

⊢ ∗ : □
(ax)

Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x := N]
(app)

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B
(abs)

Γ ⊢ A : ∗ Γ, x : A ⊢ B : s

Γ ⊢ Πx : A.B : s
(prod)



weakening, variable, conversion

Γ ⊢ A : B Γ ⊢ C : s

Γ, x : C ⊢ A : B
(weak)

Γ ⊢ A : s

Γ, x : A ⊢ x : A
(var)

Γ ⊢ A : B Γ ⊢ B ′ : s

Γ ⊢ A : B ′ if B =β B ′ (conv)



example 1
examples

X : ∗, x : X ⊢ x : X



example 2

X : ∗ ⊢ (X → X ) : ∗



example 3

A : ∗, P : A → ∗, a : A ⊢ (P a) → ∗ : □



introduction rules versus abstraction rule

Curry-Howard-de Bruijn for minimal predicate logic

[Ax ]
...
B

A → B
I [x ]→

...
B

∀x .B
I∀

Γ, x : A ⊢ M : B Γ ⊢ Πx : A.B : s

Γ ⊢ λx : A.M : Πx : A.B



elimination rules versus application rule

...
A → B

...
A

B
E→

...
∀x .B

B[x := N]
E∀

Γ ⊢ M : Πx : A.B Γ ⊢ N : A

Γ ⊢ MN : B[x := N]



example 4
examples

∀x . (P(x) → (∀y .P(y) → A) → A)



example 5

(∀x .P(x) → Q(x)) → (∀x .P(x)) → ∀y .Q(y)

Exercise! (See the exercise sheet, also for more exercises!)



example 6

∀x . (P(x) → P(f (x)) ⊢ ∀x . (P(x) → P(f (f (x)))



example 7

∀x . (P(x) → R(x , f (x))),
∀x , y . (R(x , y) → R(y , x)),
∀x , y . (R(x , y) → R(f (y), x)) ⊢ ∀x . (P(x) → R(f (x), f (x)))

Exercise! (See the exercise sheet, also for more exercises!)



Properties of λP

▶ Uniqueness of types
If Γ ⊢ M : σ and Γ ⊢ M : τ , then σ=βτ .

▶ Subject Reduction
If Γ ⊢ M : σ and M −→β N, then Γ ⊢ N : σ.

▶ Strong Normalization
If Γ ⊢ M : σ, then all β-reductions from M terminate.

Proof of SN is by defining a reduction preserving map from λP to
λ→.



Decidability Questions

Γ ⊢ M : σ? TCP
Γ ⊢ M : ? TSP
Γ ⊢? : σ TIP

For λP:

▶ TIP is undecidable (TIP is equivalent to provability in minimal
predicate logic.)

▶ TCP/TSP: simultaneously with Context checking



Type Checking

Define algorithms Ok(−) and Type (−) simultaneously:

▶ Ok(−) takes a context and returns ‘true’ or ‘false’

▶ Type (−) takes a context and a term and returns a term or
‘false’.

The type synthesis algorithm Type (−) is sound if (for all Γ and
M)

TypeΓ(M) = A =⇒ Γ ⊢ M : A

The type synthesis algorithm Type (−) is complete if (for all Γ, M
and A)

Γ ⊢ M : A =⇒ TypeΓ(M) =β A

▶ A proof assistant like Coq is based on a type checking
algorithm.

▶ The type checking algorithm is the trusted kernel of Coq



Ok(<>) = ‘true’

Ok(Γ, x :A) = TypeΓ(A) ∈ {∗,□},

TypeΓ(x) = if Ok(Γ) and x :A ∈ Γ then A else ‘false’,

TypeΓ(∗) = if Ok(Γ)then □ else ‘false’,

TypeΓ(MN) = if TypeΓ(M) = C and TypeΓ(N) = D

then if C ↠β Πx :A.B and A =β D
then B[x := N] else ‘false’

else ‘false’,



TypeΓ(λx :A.M) = if TypeΓ,x :A(M) = B

then if TypeΓ(Πx :A.B) ∈ {∗,□}
then Πx :A.B else ‘false’

else ‘false’,

TypeΓ(Πx :A.B) = if TypeΓ(A) = ∗ and TypeΓ,x :A(B) = s

then s else ‘false’



Soundness and Completeness

Soundness
TypeΓ(M) = A =⇒ Γ ⊢ M : A

Completeness

Γ ⊢ M : A =⇒ TypeΓ(M) =β A

As a consequence:

TypeΓ(M) = ‘false’ =⇒ M is not typable in Γ

NB 1. Completeness implies that Type terminates on all well-typed
terms. We want that Type terminates on all pseudo terms.
NB 2. Completeness only makes sense if we have uniqueness of
types
(Otherwise: let Type (−) generate a set of possible types)



Termination

We want Type (−) to terminate on all inputs.
Interesting cases: λ-abstraction and application:

TypeΓ(λx :A.M) = if TypeΓ,x :A(M) = B

then if TypeΓ(Πx :A.B) ∈ {∗,□}
then Πx :A.B else ‘false’

else ‘false’,

! Recursive call is not on a smaller term!
Replace the side condition

if TypeΓ(Πx :A.B) ∈ {∗,□}

by
if TypeΓ(A) ∈ {∗}



Termination

We want Type (−) to terminate on all inputs.
Interesting cases: λ-abstraction and application:

TypeΓ(MN) = if TypeΓ(M) = C and TypeΓ(N) = D

then if C ↠β Πx :A.B and A =β D
then B[x := N] else ‘false’

else ‘false’,

! Need to decide β-reduction and β-equality!
For this case, termination follows from:

▶ Soundness of Type and

▶ Decidability of equality on well-typed terms.

This decidability of equality follows from SN (strong normalization)
and CR (Church-Rosser property) – to be discussed in later
lectures.



Coq dependent type theory and predicate logic

▶ First order language: domain D, with variables x , y , z : D and
possibly functions over D, e.g. f : D → D, g : D → D → D.

▶ NB There are two “kinds” of variables: the first order
variables (ranging over the domain D) and the “proof
variables” (used as [local] assumptions of formulas).

▶ In Coq: D : Set and φ : Prop. You can use any name for
variables, but often

H : φ for assumptions: Suppose H is a proof of φ

x : D for variable declarations: Let x be an element of D


