Proving with Computer Assistance

Lecture Dependent Type Theory AP

Herman Geuvers
For the slides, thanks to: Freek Wiedijk

where we are in the course

recap

propositional logic < simple type theory
A—

predicate logic <> type theory with dependent types
AP

2nd order propositional logic <> polymorphic type theory
A2

higher order predicate logic <> calculus of constructions
AC

the main difference between A— and \P

A— B

‘type of functions from A to B’
Mx:AB

‘type of functions from A to B’ dependent product
dependent function type

type of function value B now can depend on function argument x
arrow type becomes a special case

syntax

two sorts
*, [

variables
X, V¥, Z, ...

function application

function abstraction
XA M

dependent product
Mx:A M

AP

Coq syntax versus AP syntax

Set

Prop

Type

X

M N

fun x:A => M
forall x:A, M

I
X
> > =
S =2x O« x
r¥tr?

AP does not make the distinction between Set and Prop

pseudo-terms versus terms

any expression according to the AP grammar is called a
pseudo-term
(O%)
An:nat. Ax @ n.x
(Ax :nat. x x) (Ax : nat.x x)

if also all types are okay, then the expression is called a term

O
An @ nat. nat
(Af: (Mm : nat.nat). Ax : nat. f x) (An : nat. n)
(Af : nat — nat. Ax : nat. f x) (An : nat. n)

contexts and judgments

a judgment has the form ' M : N
with I a context and M and N terms

a context I is a list of variable declarations

a variable declaration has the form x : M
with x a variable name and M a term (usually a type)

Aix, P:(Mx:A.%x),a:A F (Mw:Pa.x):0
Aix, P:A—x,a:A F (Pa)—=x*:0

the seven

® one

VvVVYVYYVYY

e two

rules of AP

rule for each kind of term
axiom rule (for the sorts)
variable rule

product rule

abstraction rule

application rule

more rules

weakening rule (for the contexts)
conversion rule

rule 1: axiom

gives the type of the sort *
the only rule with no premises!

rules 2 and 3: variable and weakening

in these rules s is either * or [J

N-A:s
MMx:AF x:A

gives the type of the variable x

if the variable is not the last in the context we need the weakening
rule

- A:B Nr=C:s
Nx:CHA:B

rule 4: product

M= A:x = B:s
rNFA—B:s

M= A:x Nx:AF B:s
F=MNx:AB:s

gives the type of a dependent product

rule 5: abstraction

Nx:AFM:B
' Xx:AM:A—B

MNx:AFM:B FTx:AB:s
N Xx:AM:Tx: A B

gives the type of a function abstraction

rule 6: application

r-- M:A— B Fr= N:A
= MN:B

Fr= M:Tlx: A B Fr=N:A
= MN:B

gives the type of a function application

rule 6: application

r'-M:A—B Fr=N:A
N= MN:B

= M:Tix: A B N=N:A
'+ MN: Blx := N]

gives the type of a function application

rule 7: conversion

r-A:B r-B:s
r=A: b8

with B = B’

is needed to make everything work

reduction and convertibility

e step

(A CAMYN) .o = (M]x = N]).

e reduction 3
zero or more steps

e convertibility =g
smallest equivalence relation

axiom, application, abstraction, product

cheat sheet

Fx:0O (2x)

= M:Tlx: A B Fr=N:A
' MN: B[x:= N]

(app)

Nx:AFM:B N-TMNx:AB:s
M= Xx:AM:Mx:AB

(abs)

N A:x Nx:AFB:s
FFTlx:AB:s

(prod)

weakening, variable, conversion

- A:B N C:s

[x . C-A-B (weak)
lIN-A:s
(var)
NMx:AFx:A

r- A:B r- B:s
r= A: B

if B=3 B' (conv)

example 1
examples

X:ix, x: X Fx:X

example 2

X:ixE (X —=X):*

example 3

Aix, P:A—x a:AF (Pa)—x*:0

introduction rules versus abstraction rule

Curry-Howard-de Bruijn for minimal predicate logic
[A]

B
Vx. B

I[x]— Iv

A— B

Nx:AF M:B N=MNx:AB:s
N Xx:AM:Tix: A B

elimination rules versus application rule

A—B A Vx. B
E— — EV
B B[x := N]

M= M:TMx:AB Fr=N:A
' MN: B[x:= N|

example 4
examples

Vx. (P(x) = (Vy.P(y) — A) — A)

example 5

(Vx. P(x) = Q(x)) — (¥x. P(x)) — ¥y. Q(y)

Exercise! (See the exercise sheet, also for more exercises!)

example 6

Vx. (P(x) — P(f(x)) F Vx.(P(x) = P(f(f(x)))

example 7

Vx. (P(x) = R(x, f(x))

wx.y. (R(x.y) = Rly.))
Vx,y. (R(x,y) = R(f(y),x)) F ¥x.(P(x)— R(f(x),f(x)))

Exercise! (See the exercise sheet, also for more exercises!)

Properties of AP

» Uniqueness of types
fr=M:oand ' M: 7, then o=47.

» Subject Reduction
fIr=M:0and M —g N, then = N: 0.

» Strong Normalization
If T = M : o, then all S-reductions from M terminate.

Proof of SN is by defining a reduction preserving map from AP to
A—.

Decidability Questions

r'EM:o? TCP
r’=mM:? TSP
M=?:o TIP
For AP:
» TIP is undecidable (TIP is equivalent to provability in minimal
predicate logic.)
» TCP/TSP: simultaneously with Context checking

Type Checking

Define algorithms Ok(—) and Type_(—) simultaneously:
» Ok(—) takes a context and returns ‘true’ or ‘false’

» Type_(—) takes a context and a term and returns a term or
‘false’.

The type synthesis algorithm Type_(—) is sound if (for all I and
M)

Typer(M)=A = TFM:A
The type synthesis algorithm Type_(—) is complete if (for all ', M

and A)
rN-M:A = Typer(M)=5A

» A proof assistant like Coq is based on a type checking
algorithm.

» The type checking algorithm is the trusted kernel of Coq

Ok(<>) = ‘true’

Ok(l,x:A) = Typer(A) € {x,0},

Typer(x) = if Ok(I') and x:A € T then A else ‘false’,
Typer(x) = if Ok(I)then O else ‘false’,
Typer(MN) = if Typer(M) = C and Typer(N) =D

then if C g lx:A.Band A=3 D
then B[x := N] else ‘false’
else ‘false’,

Typer(Ax:A.M) = if Typer ,.a(M) =B

then if Typer(Mx:A.B) € {x,00}
then lMx:A.B else ‘false’
else ‘false’,

Typer(Mx:A.B) = if Typer(A) = * and Typer ,.a(B) = s

then s else ‘false’

Soundness and Completeness

Soundness
Typer(M)=A = TFM:A

Completeness

rN-M:A = Typer(M)=5A

As a consequence:
Typer(M) = ‘false’ = M is not typable in I’

NB 1. Completeness implies that Type terminates on all well-typed
terms. We want that Type terminates on all pseudo terms.
NB 2. Completeness only makes sense if we have uniqueness of

types
(Otherwise: let Type_(—) generate a set of possible types)

Termination

We want Type_(—) to terminate on all inputs.
Interesting cases: A-abstraction and application:

Typer(Ax:A.M) = if Typer ,.a(M) =B

then if Typer(Mx:A.B) € {x,00}
then MNx:A.B else ‘false’
else ‘false’,

I Recursive call is not on a smaller term!
Replace the side condition

if Typer(Mx:A.B) € {x,00}

by
if Typer(A) € {x}

Termination

We want Type_(—) to terminate on all inputs.
Interesting cases: A-abstraction and application:

Typer(MN) = if Typer(M) = C and Typer(N) =D
then if C 5 lx:A.Band A =3 D
then B[x := N] else ‘false’
else ‘false’,

I Need to decide S-reduction and [S-equality!
For this case, termination follows from:

» Soundness of Type and
» Decidability of equality on well-typed terms.

This decidability of equality follows from SN (strong normalization)
and CR (Church-Rosser property) — to be discussed in later
lectures.

Coq dependent type theory and predicate logic

» First order language: domain D, with variables x,y,z: D and
possibly functions over D, e.g. f: D — D, g: D — D — D.

» NB There are two “kinds” of variables: the first order
variables (ranging over the domain D) and the “proof
variables” (used as [local] assumptions of formulas).

» In Coq: D :Set and ¢ : Prop. You can use any name for
variables, but often

H:p for assumptions: Suppose H is a proof of ¢

x:D for variable declarations: Let x be an element of D

