Eindhoven University of Technology

Faculty of Mathematics and Computer Science

Written Exam Proving with Computer Assistance 2IMF15, Tuesday April 6, 2021, 09.00–12.00 All paper material: lecture notes, own notes etc. can be consulted during the exam. The maximum number of points per exercise is indicated in the margin. Maxium 100 points in total.

NB Typing derivations may be given in "flag style" or in "sequent style".

1. Consider the following term "with holes" P, where \mathbf{I}_1 and \mathbf{I}_2 are copies of the wellknown λ -term $\lambda z.z.$

 $(\lambda f :?_1.\lambda x :?_2.\mathbf{I}_1(f x)) (\lambda g : \alpha \to \beta.\lambda y : \alpha.g (\mathbf{I}_2 y))$

- (10) (a) Fill in types for the ? in P, give the types for \mathbf{I}_1 and \mathbf{I}_2 and give the type of P itself in simple type theory $(\lambda \rightarrow)$ à la Church. Use $A := \alpha \rightarrow \beta$ as abbreviation. NB. You don't have to give a typing derivation.
 - (b) Compute m(P), where m(-) is the measure of a term, as used in the proof of weak normalization (WN) for $\lambda \rightarrow$. Indicate which redex will be contracted according to the strategy described in the WN proof.
- (10) 2. Give a term M in simple type theory $(\lambda \rightarrow)$ à la Church with type

 $(\alpha \to \beta \to \gamma) \to ((\alpha \to \gamma) \to \alpha) \to \beta \to \gamma.$

Give a typing derivation that gives the type of M.

3. As usual, we define **S** as $\lambda x y z . x z (y z)$, and **I** as $\lambda p. p$.

- (7) (a) Give the reduction graph of $Q := \mathbf{SII}$.
 - (b) Compute Q^* , and $(Q^*)^*$ where $(-)^*$ is the "complete development" function used in the Church-Rosser proof.
- (16) 4. For each of the following two terms, compute its principle type in simple type theory $(\lambda \rightarrow)$ à la Curry, if it exists. Give the end result and show your computation.
 - $\lambda x y. y (y x x)$

(5)

(5)

- $\lambda x y. y x (y x)$
- (10) 5. Let $x : \top$, where $\top := \forall \alpha : *.\alpha \to \alpha$. Give a type to the following term in $\lambda 2$ à la Curry. Also give the typing derivation of your result.

$$\lambda y.x\left(y\left(x\left(\lambda z.z\,z\right)\right)\right)$$

Continue on the other side

6. In $\lambda 2$ à la Church we define two types of binary trees: $\mathbb{ET}(C)$, with empty leaves and nodes labelled with terms in C, and $\mathbb{LT}(A, B)$, with leaves in A and nodes labelled with terms in B:

$$\mathbb{ET}(C) := \forall \alpha : * . \alpha \to (C \to \alpha \to \alpha \to \alpha) \to \alpha$$
$$\mathbb{LT}(A, B) := \forall \alpha : * . (A \to \alpha) \to (B \to \alpha \to \alpha \to \alpha) \to \alpha$$

Each of these data types has 2 constructors: eleaf : $\mathbb{ET}(C)$ and ejoin : $C \to \mathbb{ET}(C) \to \mathbb{ET}(C) \to \mathbb{ET}(C)$ and lleaf : $A \to \mathbb{LT}(A, B)$ and ljoin : $B \to \mathbb{LT}(A, B) \to \mathbb{LT}(A, B) \to \mathbb{LT}(A, B)$.

- (a) Given the types A, B, define the function $F : \mathbb{LT}(A, B) \to \mathbb{ET}(B)$ that replaces all leaves by an empty leaf.
- (7) (b) Given the types A, B, C, and the term $h : C \to B$ and a : A, define the function $G : \mathbb{ET}(C) \to \mathbb{LT}(A, B)$ that puts a in all of the leaves and applies h to all the nodes.
- (8) 7. In the system λP , give a term of type $\prod x, y: A.R \, x \, y \to R \, y \, x$ in the context

(7)

(8)

(7)

$$\begin{split} \Gamma &:= A:*, R: A \to A \to *, \\ &p: \Pi x, y, z : A.R \, x \, y \to R \, x \, z \to R \, y \, z, \\ &k: \Pi x : A.R \, x \, x. \end{split}$$

Give a typing derivation in short form (where you don't have to establish the wellformedness of the types themselves).

8. In the Calculus of Constructions λC , given $A : *, R : A \to A \to *, Q : A \to A \to *$, we define, $\overline{R;Q}$ (the *composition of* R and Q) as follows

 $\overline{R;Q} := \lambda x, y: A.\Pi\alpha: * .(\Pi z: A.R \, x \, z \to Q \, z \, y \to \alpha) \to \alpha.$

(a) Show that $\overline{R;Q}$ is indeed the composition of R and Q, that is: give a term of type

 $\Pi a, b, c: A.R \, a \, b \to Q \, b \, c \to \overline{R; Q} \, a \, c.$

(b) Prove that, if R is transitive, then then $\overline{R;R} \subseteq R$. That is, give a term of type

trans $R \to \Pi x, y: A. \overline{R;R} x y \to R x y$,

where, trans $R := \Pi x, y, z : A \cdot R x y \to R y z \to R x z$.

NB. In both cases, give a typing derivation in short form.

END