
5. Type inference

In this section we prove the decidability of typing in the simply typed lambda
calculus and show how to adapt the typing algorithm for λ→ in order to com-
pute types in ‘polymorphic’ functional programming languages.

Typing in λ→

We will show that the system λ→ is decidable, in the sense that it can be
verified whether a certain term is typable. If so, a so-called principal type can
be computed. As a consequence, type checking (verification of an assignment
M : σ) is also decidable.

The presentation below roughly follows Barendregt (1992); see also Barend-
sen and Smetsers (1996). The idea of strictly splitting type reconstruction into
generation of equations and unification is due to Wand (1987).

5.1. Definition. (i) A type substitution is a function ∗ : V→T. The result of
applying ∗ to a type σ is denoted by σ∗.

(ii) A unifier of two types σ, τ is a substitution ∗ such that σ∗ ≡ τ∗. This ∗
is a most general unifier if ∗ is a unifier and for all substitutions ∗′

∗′ is a unifier of σ, τ ⇒ ∃ ∗1 [∗′ = ∗1 ◦ ∗].

(iii) A system of type equations is a finite set

E = {σ1 = τ1, . . . , σn = τn}

of equations between types. A solution for E is a substitution ∗ such that ∗ is
a unifier of σi, τi for all i. In this case we write ∗ |= E . This naturally gives rise
to a notion of most general solution for E .

Note that a most general solution is unique up to renaming of type variables.
Robinson (1965) showed that a most general solution (if it exists) can be

computed effectively.

5.2. Unification Theorem. (i) There exists a recursive function U having

as input a pair of types and as output either a substitution or fail such that

(σ, τ) has a unifier ⇒ U(σ, τ) is a most general unifier of σ, τ,

(σ, τ) has no unifier ⇒ U(σ, τ) = fail.

(ii) There exists a recursive function U having as input systems of type equa-

tions ans as output either a substitution or fail such that

E has a solution ⇒ U(E) is a most general solution of E ,

E has no unifier ⇒ U(E) = fail.

13



Proof. (i) Define U(σ, τ) by recursion, as follows.

U(α, τ) = [α := τ ] if α /∈ TV(τ),

= Id (the identity) if τ ≡ α,

= fail otherwise;

U(σ1→σ2, α) = U(α, σ1→σ2);

U(σ1→σ2, τ1→τ2) = U(σ
U(σ2,τ2)
1 , τ

U(σ2,τ2)
1 ) ◦ U(σ2, τ2).

Define the measure ♯(σ, τ) by

♯(σ, τ) = (♯var(σ, τ), ♯→(σ, τ)),

where ♯var(σ, τ) denotes the number of variables in σ, τ and ♯→ the number of
arrows. One can show that this measure of U-arguments decreases (w.r.t. the
lexicographical ordering) with every recursive call. Hence U is a total function.
Moreover U satisfies the requirements.

(ii) Let E be a system of type equations; say E = {σ1 = τ1, . . . , σn = τn}.
Then define

U(E) = U(σ1→· · ·→σn, τ1→· · ·→τn). �

The next step is to associate with each term M a set of type equations in
such a way that typability of M can be formulated in terms of solvability of
those equations.

5.3. Definition. Let ∗, ∗′ be substitutions.
(i) Let σ be a type. Then ∗, ∗′ are equivalent with respect to σ (notation

∗ ∼σ ∗′) if ∗(α) = ∗′(α) for all α ∈ TV(σ).
(ii) This notion is extended sequences of bases and/or types: we write ∗ ∼Γ,σ

∗′ if ∗ ∼τ ∗′ for all types τ appearing in Γ, σ.

5.4. Definition. Let M ∈ Λ, σ ∈ T and let Γ be a basis. A set of type
equations E is exact for Γ,M, σ if for each substitution ∗ one has

(1) ∗ |= E ⇒ Γ∗ ⊢ M : σ∗

(2) Γ∗ ⊢ M : σ∗ ⇒ ∗′ |= E for some ∗′ with ∗′ ∼Γ,σ ∗.

5.5. Proposition. For each Γ,M, σ there exists a system of type equations

E = E(Γ,M, σ), computable from Γ,M, σ, such that E is exact for Γ,M, σ.

Proof. Define E(Γ,M, σ) by induction on M :

E(Γ, x, σ) = {Γ(x) = σ}

(regard Γ as a partial function),

E(Γ,MN, σ) = E(Γ,M, α→σ) ∪ E(Γ, N, α)

(α fresh),

E(Γ, λx.M, σ) = E(Γ ∪ {x:α},M, β) ∪ {σ = α→β}

(α, β fresh).

We can verify that E(Γ,M, σ) is indeed exact by induction on the structure of
M . �
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5.6. Definition. Let M ∈ Λ. The pair (Γ, σ) is a principal typing for M if
(1) Γ ⊢ M : σ,
(2) Γ′ ⊢ M : σ′ ⇒ Γ′ ⊇ Γ∗, σ′ ≡ σ∗ for some substitution ∗ .

5.7. Principal Typing Theorem. There exists a recursive function pt such

that for all M

M is typable ⇒ pt(M) is a principal typing for M ;

M is not typable ⇒ pt(M) = fail.

Proof. Let M ∈ Λ; say FV(M) = {x1, . . . , xn}. Set Γ0 = {x1:α1, . . . , xn:αn},
and σ0 = α (all α’s fresh). Define

pt(M) = (Γ∗

0, σ
∗

0) if U(E(Γ0,M, σ0)) = ∗,

= fail if U(E(Γ0,M, σ0)) = fail.

The correctness of this procedure follows from Proposition 5.5 and Theorem
5.2. �

5.8. Corollary. (i) Typability in λ→ is decidable.

(ii) Type checking is decidable.

Proof. (i) Immediately by Theorem 5.7.
(ii) Given Γ,M, σ, check whether (Γ ↾ FV(M), σ) is a substitution instance

of pt(M). �

For the system λ2 the situation is radically different. The following result
is due to Wells (1994).

5.9. Theorem. Type checking ans typability in λ2-Curry are undecidable.

Type inference in functional programming languages

In view of Theorem 5.9, there is no hope for finding a programming language
with polymorphic types (in the sense of λ2) that are automatically inferred by
a compiler. Most functional languages, however, claim to have a polymorphic
type system. The solution to this paradox is the observation that the polymor-
phism in these languages is very weak: it rather is an instantiation mechanism

to handle the separation of function definitions from function applications.
If a functional program introduces the identity

Ix = x,

then an expression of the form

· · · (I 3) · · · (I true) · · ·

only makes sense if I is regarded as a polymorphic function with type ∀α.α→α
(which is consistent with I’s expansion λx.x).

By restricting the use of the ∀-introduction rule to function definitions and
the ∀-elimination rule to applications of function symbols one obtains a decid-
able restriction of λ2. In the sequel we will describe a formal system based on
this idea, and indicate a method for determining principal typings.
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5.10. Definition. We extend Λ with explicit (non-recursive) definitions. The
resulting term set (denoted by Λ+) is defined inductively as follows.

Λ+ ::= V | Λ+Λ+ | λV.Λ+ | let V = Λ+
in Λ+.

Some hygiene is necessary: in let x = M in N , the variable x should not occur
in M ; moreover the bound variables in N should be chosen differently from x.

5.11. Definition. By T we denote the set of λ→-types. The set of type

schemes (notation T∀) is introduced by setting

T∀ ::= T | ∀V.T∀.

In the sequel, we let σ, τ, . . . range over T and S, T, . . . over T∀.

5.12. Definition. The rules of type assignment for Λ+-terms are the following.

Γ, x:S ⊢ x : S

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x:σ ⊢ M : τ

Γ ⊢ λx.M : σ→τ

Γ ⊢ M : S Γ, x:S ⊢ N : τ

Γ ⊢ let x = M in N : τ

Γ ⊢ M : ∀α.S

Γ ⊢ M : S[α := τ ]

Γ ⊢ M : S

Γ ⊢ M : ∀α.S

An example of a correct type assignment is

let I = λx.x in I(λz.I z) : α→α.

The presentation given here contrasts Barendsen and Smetsers (1993), where
types induced by function definitions and specifications of algebraic data types
are collected into a separate environment.

In order to show that the system is decidable we construct a syntax-directed
variant by incorporating the ∀-instantiation and quantification rules in the other
rules.

5.13. Definition. (i) Let σ ∈ T and let Γ be a context. Then the Γ-scheme of
σ (notation ∀Γ(σ)) is the type ∀~α.σ, where ~α consists of the elements of TV(σ)
not occurring in Γ.
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(ii) The new derivation rules are the following.

Γ, x:∀~α.σ ⊢ x : σ[~α := ~τ ]

Γ ⊢ M : σ→τ Γ ⊢ N : σ

Γ ⊢ MN : τ

Γ, x:σ ⊢ M : τ

Γ ⊢ λx.M : σ→τ

Γ ⊢ M : σ Γ, x:∀Γ(σ) ⊢ N : τ

Γ ⊢ let x = M in N : τ

We denote derivability in the syntax directed system by ⊢sd.

The following shows that the two systems are equivalent with respect to
simple types.

5.14. Proposition. For all M ∈ Λ+

Γ ⊢sd M : σ ⇒ Γ ⊢ M : σ,

Γ ⊢ M : ∀~α.σ ⇒ Γ ⊢sd M : σ.

First observe that we cannot split type derivation into generation of equa-
tions and computation of a solution of these equations: typing a let-statement
involves extending the context with a ∀-quantified type, which we have to infer
first. The necessary unifications are therefore done on the fly. The unification
techniques for λ→ will be sufficient for computation of our types.

5.15. Proposition. There exists a recursive function T having as input triples

Γ,M, σ and as output either a substitution or fail, such that for all ∗

Γ∗ ⊢ M : σ∗ ⇒ ∃ ∗′ [∗ ∼Γ,σ ∗′ ◦ T (Γ,M, σ)];

moreover, if there does not exist ∗ with Γ∗ ⊢ M : σ∗ then T (Γ,M, σ) = fail.

Proof. We define T (Γ,M, σ) by induction on M :

T (Γ, xσ) = U(Γ̃(x), σ),

T (Γ,MN, σ) = T (Γ∗, N, α∗) ◦ ∗,

where ∗ = T (Γ,M, α→σ), α fresh,

T (Γ, λx.M, σ) = U(σ∗, α∗→β∗) ◦ ∗,

where ∗ = T (Γ ∪ {x:α},M, β), α, β fresh,

T (Γ, let x = M in N,σ) = T (Γ∗ ∪ {x:∀Γ∗(α
∗)}, N, σ∗) ◦ ∗,

where ∗ = T (Γ,M, α), α fresh.

Here ·̃ denotes the generation of a ‘fresh instance’ of a type scheme: ∀̃~α.σ ≡
σ[~α := ~β], where ~β is fresh. �
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5.16. Corollary. Typability and type checking for Λ+-terms are decidable.

We will now discuss the extension of Λ+ with recursion: function defini-
tions in which the name of the function appears in the body. If one allows
polymorphic type instantiation of function identifiers also in their own defini-
tions, the system becomes undecidable. We therefore require that all recursive
occurrences of the defined function symbol have the same type as the body of
the function, cf. Milner (1978).

5.17. Definition. (i) The set Λ+ is extended with recursive definitions:

Λ++ ::= V | Λ++Λ++ | λV.Λ++ | let V = Λ++
in Λ++ | letrec V = Λ++

in Λ++.

In letrec x = M in N we allow x to occur in M .
(ii) The (syntax directed) typing rules for Λ++ are those for Λ+, extended

with

Γ, x:σ ⊢ M : σ Γ, x:∀Γ(σ) ⊢ N : τ

Γ ⊢ letrec x = M in N : σ

5.18. Proposition. Typability and type checking for Λ++ are decidable.

Proof. We can extend T by putting

T (Γ, letrec x = M in N,σ) = T (Γ∗ ∪ {x:∀Γ∗(α
∗)}, N, σ∗) ◦ ∗,

where ∗ = T (Γ ∪ {x:α},M, α), α fresh. �

The extension of this system with mutually recursive function definitions is
straightforward.

6. Resource conscious type systems

In these notes we will describe some type systems inspired by Linear Logic,
introduced by Girard (1987). These systems do not only regulate the internal
structure of objects according to their types, but also their number of occur-
rences in a term. Objects (especially parameters of a function) are regarded as
resources. Some resources can be used exactly once; others can be discarded or
used more than once.

Linear Logic is an example of a ‘resource sensitive’ logic. In these systems
one keeps track of the number of times a certain assumption is used. Resourse
concious logics have received considerable attention from computer scientists.

One of the potential applications is the incorporation of assignments in
functional programming. This is paradoxical, because the absense of side ef-
fects is one of the main reasons why functional languages are often praised.
As a consequence of this absense, functional languages have the fundamental
property of referential transparency : each (sub)expression denotes a fixed value,
independently of the way this value is computed.
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