1. Show that the untyped \(\lambda \)-term \(\omega \) (= \(\lambda x.x \)) is not typable in PCF. That is: show that there are no \(\tau_1 \) and \(\tau_2 \) such that \(\vdash \text{fn } x : \tau_1, x x : \tau_2 \).

2. Suppose that the term \(\text{mult} : \text{nat} \to \text{nat} \to \text{nat} \) defines multiplication in PCF. Give a PCF term that defines the faculty function \(\text{fac} : \text{nat} \to \text{nat} \).

3. Show that, if \(Q \Downarrow V \), then \((\text{fn } x : \tau.\text{fn } y : \tau.y)PQ \Downarrow V \). (NB. \(V \) denotes an arbitrary value.)

4. To prove that PCF evaluation is deterministic, we prove (in Proposition 5.4.1) that the following set is closed under the rules of Fig.3
 \[\{(M, \tau, V)|M \Downarrow \tau V \land \forall V'(M \Downarrow \tau V' \Rightarrow V = V')\} \]
 Show this for the cases of the rules (\(\Downarrow_{\text{if1}} \)) and (\(\Downarrow_{\text{cbn}} \)).
 (An alternative way of looking at this is to prove the following:
 \(M \Downarrow \tau V \Rightarrow \forall V'(M \Downarrow \tau V' \Rightarrow V = V') \)
 by induction on the derivation of \(M \Downarrow \tau V \). Do only the cases when the last applied rule is (\(\Downarrow_{\text{if1}} \)) or (\(\Downarrow_{\text{cbn}} \)).)

5. (a) Give a type \(\tau \), a term \(M \), values \(V, V' \) and a context \(C[-] \) such that \(M \Downarrow \tau V \) but \(C[M] \Downarrow \tau V' \neq C[V] \).
 (b) Give a type \(\tau \), a term \(M \), a value \(V \) and a context \(C[-] \) such that \(M \Downarrow \tau V \) but \(C[M] \Downarrow \tau \) (\(C[M] \) has no value.)
 (c) Give a type \(\tau \), a term \(M \), a value \(V \) and a context \(C[-] \) such that \(M \Downarrow \tau \) but \(C[M] \Downarrow \tau V \)

6. Given the definition of plus (Exercise 5.6.3.)
 \[
 \text{plus} = \text{fix}(\text{fn } p : \text{nat} \to \text{nat}.\text{fn } x : \text{nat}.\text{fn } y : \text{nat}.
 \begin{cases}
 \text{if zero}(y) \text{ then } x \text{ else succ}(px \text{ pred}(y))
 \end{cases})
 \]
 Prove (by induction) that
 \[
 \forall m, n(\text{plus succ}^m(0) \text{ succ}^n(0) \Downarrow_{\text{nat}} \text{ succ}^{m+n}(0))
 \]

7. (If we come to this topic at the lecture!) Prove that the following terms \(M \) and \(N \) are not contextually equivalent.
 \[
 M = \text{if } x \text{ then } 0 \text{ else } 1
 \]
 \[
 N = \text{if } y \text{ then } 0 \text{ else } 1
 \]