RADBOUD UNIVERSITY NIJMEGEN

Science Faculty

Test exam Semantics and Domain Theory ?? ?? June 2013, ?? -??

The maximum number of points per question is given in the margin. (Maximum 100 points in total.)

NB: you can use all your notes and course material

1. We define the program

$$S :=$$
 while $x > 0$ do $(x := x - 1; y := y + z)$

and we define w_n : State \rightarrow State as follows: $w_0(s) = \bot$ and for n > 0,

$$w_n(s) := \begin{cases} s & \text{if } s(x) \le 0\\ s[x \mapsto 0, y \mapsto s(y) + s(x) * s(z) & \text{if } 0 < s(x) < n\\ \bot & \text{if } s(x) \ge n \end{cases}$$

(10) (a) Determine the functional F that we need in order to compute the denotational semantics of S and show that $F(w_n) = w_{n+1}$

- (5) (b) Determine $w_{\infty} := \bigsqcup_{i \in \mathbb{N}} w_n$ and show that w_{∞} is a fixed-point of F.
- (10) 2. Show that, for (D, \sqsubseteq) a cpo, $(D, \sqsubseteq) \stackrel{\text{mon}}{\to} (D, \sqsubseteq)$ is also a cpo. $((D, \sqsubseteq) \stackrel{\text{mon}}{\to} (D, \sqsubseteq)$ is the set of *monotone* functions from (D, \sqsubseteq) to (D, \sqsubseteq) .)

(10) 3. (a) Let $p \in \mathbb{N}$. Given a sequence of sets $D_0 \subseteq D_1 \subseteq \ldots D_i \ldots \subseteq \mathbb{N}$, define the sequence of functions $k_i : \mathbb{N}_{\perp} \xrightarrow{\text{mon}} \mathbb{N}_{\perp}$ by

$$\begin{cases} k_i(x) := p & \text{if } x \in D_i \\ k_i(x) := \bot & \text{if } x = \bot \text{ or } x \in \mathbb{N} \setminus D_i \end{cases}$$

Show that $(k_i)_{i \in \mathbb{N}}$ is a chain.

(20)

(b) Consider the function
$$H: (\mathbb{N}_{\perp} \xrightarrow{\text{mon}} \mathbb{N}_{\perp}) \to [0, 1]$$
 defined as follows

$$H(f) := \begin{cases} 0 & \text{if } \forall x \in \mathbb{N}_{\perp}(f(x) = \bot) \\ \frac{1}{n+1} & \text{if } n \text{ is the smallest } n \text{ for which } f(n) \neq \bot \end{cases}$$

where we mean *smallest* with respect to the ordinary \leq -relation on \mathbb{N} . NB. [0, 1] is just the closed interval from 0 to 1; the ordering on [0, 1] is just the well-known one \leq .

- i. Prove that H is monotone.
- ii. Compute $H(\bigsqcup_{i\in\mathbb{N}}k_i)$.
- iii. Prove that H is continuous.
- 4. Define the sequence of functions $f_i : \mathbb{N}_{\perp} \times \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ as follows (*n* and *m* range over \mathbb{N}).

$$\begin{cases} f_i(x,y) := \bot & \text{if } x = \bot \text{ or } y = \bot \\ f_i(n,m) := k & \text{if } k \text{ is the smallest } k \le i \text{ such that } k * n \ge m \\ f_i(n,m) := \bot & \text{if } \forall k \le i(k * n < m) \end{cases}$$

- (10) (a) Show that each f_i is monotone and continuous.
- (10) (b) Show that $(f_i)_{i \in \mathbb{N}}$ is a chain.

(10) (c) Compute
$$\cup_{i \in \mathbb{N}} f_i$$

5. We give the following interpretation of the less-than-or-equal ordering on the natural numbers as a domain-theoretic function $\preceq: \mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \to \mathbb{B}_{\perp}$, where \mathbb{B}_{\perp} is the well-known flat cpo of booleans.

- (5) (a) Prove that \leq is monotone and continuous.
- (10) (b) Give a different interpretation of the less-than-or-equal ordering on the natural numbers as a continuous domain-theoretic function $\leq : \mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \to \mathbb{B}_{\perp}$, and prove that it is monotone.
- (5) 6. (a) Prove that the denotational sematics of the following PCF terms are the same: $M := \mathbf{fix} (\mathbf{fn} \ f : \tau \to \tau. f)$ and $N := \mathbf{fn} \ y : \tau.\mathbf{fix} (\mathbf{fn} \ x : \tau. x)$.
- (5) (b) Prove that the denotational sematics of the following PCF terms, S and T, are the same. (Here, p,q and r are boolean expressions, K, L are arbitrary expressions of the same type.)

$$S := \mathbf{if} (\mathbf{if} \ p \mathbf{then} \ q \mathbf{else} \ r) \mathbf{then} \ K \mathbf{else} \ L$$

 $T := \mathbf{if} \ p \mathbf{then} \ (\mathbf{if} \ q \mathbf{then} \ K \mathbf{else} \ L) \mathbf{else} \ (\mathbf{if} \ r \mathbf{then} \ K \mathbf{else} \ L).$

ZOZ

- (10) 7. Show the following two cases in the proof of the substitution property (slide 38): if M_1 then M_2 else M_3 and fn $x : \tau . M$.
- (10) 8. Prove Lemma 7.2.1 (iii) in the course notes of Winskel.
- (10) 9. (a) Show that, if the number of elements in the cpo D is finite and $|D| \ge 2$ then $|[D \to D]| > |D|$. (That is: there are strictly more continuous functions on D then elements of D.)
- (10) (b) Prove (using the result under (a)) that a λ -model cannot be finite (unless it is trivial and contains only one element).
- (15) 10. Let M_1 , M_2 and M_3 be λ -terms that satisfy the following equations

$$M_1 = (\lambda x. \lambda y. y x) M_1$$
$$M_2 = (\lambda x. \lambda y. y (x y)) M_2$$
$$M_3 = (\lambda x. \lambda y. y M_3) M_3.$$

For which i, j do we have $D_A \models M_i = M_j$? Prove your answer.

- (10) 11. (a) In the model D_A , $F \circ G = id_{[D \to D]}$, but $G \circ F \neq id_D$. Is it the case (in D_A) that $G \circ F \sqsubseteq id_D$? Or $G \circ F \sqsubseteq id_D$? Or is neither the case?
- (10) (b) Show in detail that, in the model D_A , F is continuous in its first argument.

3