Semantics and Domain theory

Exercises 1

At the lecture, we gave a denotational semantics for the language \(L \) given by the grammar

\[
\begin{align*}
 b & : \text{bit} ::=: 0 \mid 1 \\
 n & : \text{bin} ::=: b \mid n \ b
\end{align*}
\]

NB 0 and 1 are symbols, not the numbers.

The semantics is given by the model \(\mathbb{N} \), the natural numbers, and the interpretation

\[
\begin{align*}
 [0] & := 0 \\
 [1] & := 1 \\
 [n \ b] & := 2 \ast [n] + [b]
\end{align*}
\]

In the lecture, we have recursively defined the operation \(O(n) \), which prefixes a binary numeral \(n \) with a leading 0 as follows.

\[
\begin{align*}
 O(0) & := \mathbf{00} \\
 O(1) & := \mathbf{01} \\
 O(n \ b) & := O(n) \ b
\end{align*}
\]

We have given an operational semantics \(\Rightarrow \) via the rules

\[
\begin{align*}
 0 \Rightarrow \mathbf{00} & \quad 1 \Rightarrow \mathbf{01} & \quad n \Rightarrow m \\
 n \ b \Rightarrow m \ b
\end{align*}
\]

Exercises:

1. Define the operation \(S(n) \), which computes the binary numeral which is the successor of \(n \).

2. (a) Give an operational semantics for \(S(n) \), in the form of a relation \(n \Rightarrow m \) such that \(S(n) = \mathbf{m} \) iff \(n \Rightarrow m \)

 (b) Prove that \(S(n) = \mathbf{m} \) iff \(n \Rightarrow m \)

3. Prove \([S(n)] = [n] + 1\) for all \(n \).

4. (a) Compute the denotational semantics of \(S_1 := x := x + 1; \ y := x + x \)

 (b) Compute the denotational semantics of \(S_2 := \text{if } x > 0 \text{ then } x := 1 \text{ else } x := -1 \)

NB Your answer should be a "state transformers", i.e. an element of \(\text{State} \rightarrow \text{State} \), the set of partial functions from \(\text{State} \) to \(\text{State} \). For us a state is a function from variables to integers, \(r : \mathcal{V} \rightarrow \mathbb{Z} \).