Semantics and Domain theory
Exercises 12

1. Which of the following sets are complete lattices.
 (a) The set of flat natural numbers \mathbb{N}_\perp.
 (b) The set $\mathcal{P}_{\text{fin}}(\mathbb{N})$ of finite subsets of \mathbb{N}.
 (c) The set $\Omega (= \mathbb{N} \cup \{\omega\}$, with the ordering we have seen before).
 (d) The set of monotone functions from \mathbb{B}_\perp to \mathbb{B}_\perp.
 (Remember that the set of flat booleans with a top element added, \mathbb{B}_\perp, is a complete lattice.)

2. Complete the proof of Proposition 3.1.7.
 That is, show that in a complete lattice (D, \sqsubseteq), if we define
 $$\bigwedge X := \bigcup \{y \in D \mid y \sqsubseteq X\},$$
 then $\bigwedge X$ is indeed the greatest lower bound (also called the \inf) of X.

3. Prove the correctness of Definition 3.2.5. To prove this, you have to show that the function
 $$\lambda d.[[P]]_{\rho([x:=d])}$$
 is continuous for every P and ρ. (You may assume that F and G are continuous and all the other results about continuity from the notes.)

4. At the lecture, we have seen the interpretations in D_A of $I (= \lambda x.x)$, $K (= \lambda x.\lambda y.x)$ and \mathbf{II}.
 (a) Compute the interpretation of $\lambda x.x$.
 (b) Show that $[\mathbf{KI}] = \{(\beta, (\gamma, c)) \mid c \in \gamma\}$ (without doing a β-reduction first).

5. Let Y be an element of D_A and let ρ be a valuation with $\rho(y) = Y$.
 (a) Compute in D_A the interpretation of $\lambda x.y$ by expressing $[\lambda x.y]_{\rho}$ in terms of Y.
 (b) Conclude that the η-rule does not hold in D_A. (The η-rule says that $\lambda x.M x = M$ if $x \notin \text{FV}(M)$.)

6. Use the result of the following exercise ($[[\Omega]] = \emptyset$) to
 (a) compute the interpretation of $\lambda y.\Omega$ in D_A,
 (b) compute the interpretation of $\lambda y.y \Omega$ in D_A.

7. [Challenging] Show that the interpretation of $\Omega (= (\lambda x.x)(\lambda x.x))$ in D_A is \emptyset.
 (Hint: From a $c \in [[\Omega]]$ you can construct an infinite sequence $(\alpha_i)_{i \in \mathbb{N}}$ with $(\alpha_{i+1}, c) \in \alpha_i$ for all i, which is impossible in D_A.)