1. Prove Proposition 3.3.1, that is prove that, given the partial function \(f : X \to Y \), the function \(f_\bot : X_\bot \to Y_\bot \) is continuous.

2. Prove Proposition 3.3.2, that is, prove that for each domain \(D \) the function \(\text{if} : B_\bot \times (D \times D) \to D \) defined by \(\text{if}(tt, (d, e)) = d \), \(\text{if}(ff, (d, e)) = e \) and \(\text{if}(\bot, (d, e)) = \bot \) is continuous.

3. (Exercise 3.4.2 of Winskel): Let \(X \) and \(Y \) be sets and \(X_\bot \) and \(Y_\bot \) be the corresponding flat domains. Show that a function \(f : X_\bot \to Y_\bot \) is continuous if and only if one of (a) or (b) holds:

 (a) \(f \) is strict, i.e. \(f(\bot) = \bot \).

 (b) \(f \) is constant, i.e. \(\forall x \in X (f(x) = f(\bot)) \).

4. Show that the following two definitions of the ordering between functions \(f, g : D \to E \) (see Slide 17) are equivalent.

 (a) \(f \sqsubseteq g := \forall d \in D (f(d) \sqsubseteq_E g(d)) \).

 (b) \(f \sqsubseteq' g := \forall d_1, d_2 \in D (d_1 \sqsubseteq_D d_2 \Rightarrow f(d_1) \sqsubseteq_E g(d_2)) \).

5. Prove that for \(D \) a domain and \(F : (D \to D) \to (D \to D) \) and \(g : D \to D \) continuous,

\[
\text{ev}(\text{fix}(F), \text{fix}(g)) = \sqcup_{k \geq 0} F^k(\bot')(f^k(\bot)),
\]

where \(\bot \) is in \(D \) and \(\bot' \) is in \(D \to D \) and \(\text{ev} \) is the evaluation function of Proposition 3.2.1.