Semantics and Domain theory
Exercises 8

1. (a) Give a type \(\tau \), a term \(M \), values \(V, V' \) and a context \(C[-] \) such that \(M \Downarrow\tau V \) but \(C[M] \Downarrow\tau V' \neq C[V] \).
 (b) Give a type \(\tau \), a term \(M \), a value \(V \) and a context \(C[-] \) such that \(M \Downarrow\tau V \) but \(C[M] \nmid\tau \)
 \((C[M] \text{ has no value}) \)
 (c) Give a type \(\tau \), a term \(M \), a value \(V \) and a context \(C[-] \) such that \(M \nmid\tau \) but \(C[M] \Downarrow\tau V \)

2. Prove that the following terms \(M \) and \(N \) are not contextually equivalent.
 (a) \(M = \text{if } x \text{ then } 0 \text{ else } 1 \) and \(N = \text{if } y \text{ then } 0 \text{ else } 1 \).
 (b) \(M = \text{fn } x : \text{nat. succ(pred } x) \) and \(N = \text{fn } x : \text{nat } . x \).

3. (Exercise 6.5.2.) Define \(\Omega_{\tau} = \text{fix}(\text{fn } x : \tau.x) \)
 (a) Show that \(\downarrow[\Omega_{\tau}] \) is the least element of the domain \([\tau] \).
 (b) Deduce that \(\downarrow[\text{fn } x : \tau.\Omega_{\tau}] = \downarrow[\Omega_{\tau\rightarrow\tau}] \).

4. (a) Compute the denotational semantics of \(M = \text{fn } x : \text{bool.fn } y : \text{nat.if } x \text{ then } y \text{ else } y \)
 (b) Define a term \(N \) such that \(\downarrow[M] = \downarrow[N] \) but \(N \nmid M \).

5. Define terms \(M, N : \text{nat } \rightarrow \text{nat} \) with \(\downarrow[M] \sqsubseteq \downarrow[N] \) and \(\downarrow[M] \neq \downarrow[N] \).

6. Verify that \(\downarrow[(\text{fn } x : \sigma. M)N] = \downarrow[M[N/x]] \) for \(M, N \) with \(\vdash N : \sigma \) and \(x : \sigma \vdash M : \tau \). (Use the result on Slide 38, the Substitution Lemma.)