1. (Part of Exercise 6.5.1.) Prove the Proposition on Slide 38 for the cases
 (a) $M' = x$
 (b) $M' = \text{fn} y : \sigma. P$
 (c) $M' = PQ$.

2. Prove Theorem 6.4.1 for the inductive cases \Downarrow_{pred} and \Downarrow_{if1}.
 Remember that Theorem 6.4.1 states that for all closed expressions M and V and type τ, if
 $M \Downarrow_\tau V$, then $[M] = [V]$. It is proved by induction on the derivation of $M \Downarrow_\tau V$.

3. Prove the following properties (by induction on τ). Here, M, M_1, M_2 range over closed terms,
 d_1, d_2 are domain elements.
 (a) If $d_2 \sqsubseteq d_1$ and $d_1 \triangleleft_\tau M_1$, then $d_2 \triangleleft_\tau M_1$.
 (b) If $d_1 \triangleleft_\tau M_1$ and $\forall V (M_1 \Downarrow_\tau V \Rightarrow M_2 \Downarrow_\tau V)$, then
 \[d_1 \triangleleft_\tau M_2 \]
 (c) The set $\{d \in [[\tau]] \mid d \triangleleft_\tau M\}$ is chain-closed.

 These properties constitute Lemma 7.2.1 (iii) and (ii)

4. Remember that \triangleleft_τ denotes the approximation relation (slide 39).
 Show that, if $d \triangleleft_{\text{nat}} M$, $e \triangleleft_{\text{nat}} N$ and $b \triangleleft_{\text{bool}} P$, then
 \[\text{if}(b, d, e) \triangleleft_{\text{nat}} \text{if } P \text{ then } M \text{ else } N \]
 (This is the "if" inductive case in the proof of the Fundamental Property, Slide 40)