Semantics and Domain theory Exercises 2

NB. We write State \rightarrow State for the set of partial functions from State to State.

- 1. Do exercise 1.2.1. of Winskel at the end of Chapter 1.
- 2. (a) Define the denotational semantics of **repeat** P **until** b as a fixed point of a function $g: (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State})$. (NB this program executes statement P and then checks the boolean b; if b holds, execution stops, if b doesn't hold, it iterates.)
 - (b) Define a denotational semantics for the statement for $x := e_1$ to e_2 do P:
 - i. First with e_1 , e_2 fixed numbers in \mathbb{Z} , say n and m.
 - ii. Discuss some of the choices and problems with giving the general semantics, where e_1 and e_2 are arbitrary expressions. What semantics would you give to for x := 1 to x + 1 do skip? And to for x := 1 to 3 do x := x - 1?
- 3. Consider the function $f : (State \rightarrow State) \rightarrow (State \rightarrow State)$ as defined by Winskel on slide 6, but now with $State = V \rightarrow \mathbb{Z}$:

$$\begin{array}{lll} f(w)(s) & := & s & \text{if } s(x) \leq 0 \\ f(w)(s) & := & w(s[x \mapsto s(x) - 1, y \mapsto s(x) \ast s(y)]) & \text{if } s(x) > 0 \end{array}$$

- (a) Do exercise 1.2.2. of Winskel at the end of Chapter 1.
- (b) Prove $f(w_{\infty}) = w_{\infty}$ for w_{∞} : State \rightarrow State as defined a la Winskel's notes. (First redefine w_{∞} for our notion of State.)
- (c) Prove that $\forall s \in \mathsf{State} \exists n[f^n(\bot)(s) = f^{n+1}(\bot)(s)].$