Semantics and Domain theory Exercises 6

- 1. (This is basically Exercise 4.4.1. of DENS)
 - (a) Show that if S and T are chain-closed, then $S \cup T$ is chain-closed.
 - (b) Show that if S_i is chain-closed for every $i \in I$, then $\bigcap_{i \in I} S_i$ is chain-closed.
- 2. (Exercise 4.4.2.) Give an example of a subset S of $D\times D$ that is not chain-closed, but which satisfies:
 - (a) $\forall d \in D, \{d' | (d, d') \in S\}$ is chain-closed (b) $\forall d' \in D, \{d | (d, d') \in S\}$ is chain-closed.

[Hint: consider $D = D = \Omega$, the cpo in Figure 1.] (Compare this with the property of continuous functions given on Slide 15.)

- 3. The collection of chain-closed sets is not closed under arbitrary union. (It is not the case, in general that $\forall i \in I(S_i \text{ is chain closed}) \text{ implies } \bigcup_{i \in I} S_i \text{ is chain-closed.}$)
 - (a) Conclude this from the previous exercise.
 - (b) Conclude this by directly constructing a counterexample in Ω .
- 4. Let $P: D \to B_{\perp}$ and $g: D \to D$ be continuous. Define $f: D \times D \to D \times D$ by

$$f(d_1, d_2) = if(P(d_1), (g(d_1), g(d_2)), (g(d_2), g(d_1))).$$

Show that for fix $(f) = (u_1, u_2)$, we have $u_1 = u_2$. (Use Scott induction.)

5. Prove that for $f: D \to E$ monotone,

 f^{-1} preserves chain-closed sets $\Rightarrow f$ is continuous,

where f^{-1} preserves chain-closed sets means that, for all $S \subseteq E$, if S is chain-closed, then $f^{-1}(S)$ is a chain-closed subset of D.