Semantics and Domain theory Exercises 8

- 1. (a) Give a type τ , a term M, values V, V' and a context C[-] such that $M \Downarrow_{\tau} V$ but $C[M] \Downarrow_{\tau} V' \neq C[V]$.
 - (b) Give a type τ , a term M, a value V and a context C[-] such that $M \Downarrow_{\tau} V$ but $C[M] \not\Downarrow_{\tau} (C[M]$ has no value.)
 - (c) Give a type τ , a term M, a value V and a context C[-] such that $M \not \Downarrow_{\tau}$ but $C[M] \not \Downarrow_{\tau} V$
- 2. Prove that the following terms M and N are not contextually equivalent.
 - (a) $M = \mathbf{if} x \mathbf{then} 0 \mathbf{else} 1$ and $N = \mathbf{if} y \mathbf{then} 0 \mathbf{else} 1$.
 - (b) $M = \operatorname{fn} x : \operatorname{nat.succ}(\operatorname{pred} x) \text{ and } N = \operatorname{fn} x : \operatorname{nat.} x.$
- 3. (Exercise 6.5.2.) Define $\Omega_{\tau} = \mathbf{fix}(\mathbf{fn} x : \tau . x)$
 - (a) Show that $\llbracket \Omega_{\tau} \rrbracket$ is the least element of the domain $\llbracket \tau \rrbracket$.
 - (b) Deduce that $\llbracket \mathbf{fn} x : \tau . \Omega_{\tau} \rrbracket = \llbracket \Omega_{\tau \to \tau} \rrbracket$.
- 4. (a) Compute the denotational semantics of M = fn x : bool. fn y : nat.if x then y else y
 (b) Define a term N such that [[M]] = [[N]] but N ¥ M.
- 5. Define terms $M, N : \mathbf{nat} \to \mathbf{nat}$ with $\llbracket M \rrbracket \sqsubseteq \llbracket N \rrbracket$ and $\llbracket M \rrbracket \neq \llbracket N \rrbracket$.
- 6. Verify that $\llbracket (\mathbf{fn} \ x : \sigma . M) N \rrbracket = \llbracket M[N/x] \rrbracket$ for M, N with $\vdash N : \sigma$ and $x : \sigma \vdash M : \tau$. (Use the result on Slide 38, the Substitution Lemma.)