Semantics and Domain theory

Exercises 11

Recall the following terms in untyped λ-calculus

- c_{n} denotes the n-th Church numeral, so in particular $c_{0}=\lambda f x \cdot x, c_{1}=\lambda f x . f x$ and in general $c_{n}=\lambda f x \cdot f^{n}(x)$.
- $\mathbf{K}=\lambda x y \cdot x, \mathbf{I}=\lambda x \cdot x$

1. (a) Prove that the equation $c_{0}=c_{1}$ is inconsistent in untyped λ calculus.
(b) (More challenging) Prove that $c_{0}=c_{n+1}$ is inconsistent for any $n \in \mathbb{N}$ and conclude that $c_{n}=c_{m}$ is inconsistent for any $n, m \in \mathbb{N}$ with $n \neq m$.
2. The applicative structure (A, App), with $A=\mathbb{N}$ (the natural numbers) and App $=*$ (multiplication) cannot be made into a (consistent) model of the untyped λ-calculus. We prove this in the following steps:
Consider $(\mathbb{N}, *)$ and assume that there is an interpretation $\llbracket-\rrbracket$ satisfying the definition that we have given in the lecture (see Definition 59 of Berline). Now:
(a) Show that $\llbracket \mathbf{K} \mathbf{I} \rrbracket=\llbracket \mathbf{I} \mathbf{K} \rrbracket$.
(b) Conclude that $d=e$ for all $d, e \in \mathbb{N}$.

So: contradiction.
3. We consider the model definition as explained in the lecture. (See Definition 57 of Berline; so we assume that the interpretation $\llbracket-\rrbracket$ is well-defined.)
Assume $G \circ A=\operatorname{id}_{M}$. Show that the η-rule holds in the model. $(\lambda x \cdot N x=N$ for all N with $x \notin \mathrm{FV}(N)$.)
4. Prove that the theory that equates all λ-terms that don't have a normal form is inconsistent by showing that the following equation is inconsistent in untyped λ calculus:

$$
\lambda x y . x y \Omega=\lambda x y . y x \Omega .
$$

