Semantics and Domain theory

Exercises 11

Recall the following terms in untyped λ -calculus

- c_n denotes the *n*-th Church numeral, so in particular $c_0 = \lambda f x.x$, $c_1 = \lambda f x.f x$ and in general $c_n = \lambda f x.f^n(x)$.
- $\mathbf{K} = \lambda x y.x$, $\mathbf{I} = \lambda x.x$
- 1. (a) Prove that the equation $c_0 = c_1$ is inconsistent in untyped λ calculus.
 - (b) (More challenging) Prove that $c_0 = c_{n+1}$ is inconsistent for any $n \in \mathbb{N}$ and conclude that $c_n = c_m$ is inconsistent for any $n, m \in \mathbb{N}$ with $n \neq m$.
- 2. The applicative structure (A, App) , with $A = \mathbb{N}$ (the natural numbers) and $\mathsf{App} = *$ (multiplication) cannot be made into a (consistent) model of the untyped λ -calculus. We prove this in the following steps:

Consider $(\mathbb{N}, *)$ and assume that there is an interpretation [-] satisfying the definition that we have given in the lecture (see Definition 59 of Berline). Now:

- (a) Show that $\llbracket \mathbf{K} \mathbf{I} \rrbracket = \llbracket \mathbf{I} \mathbf{K} \rrbracket$.
- (b) Conclude that d = e for all $d, e \in \mathbb{N}$.

So: contradiction.

- 3. We consider the model definition as explained in the lecture. (See Definition 57 of Berline; so we assume that the interpretation $\llbracket \rrbracket$ is well-defined.) Assume $G \circ A = \mathrm{id}_M$. Show that the η -rule holds in the model. ($\lambda x.N \, x = N$ for all N with $x \notin \mathrm{FV}(N)$.)
- 4. Prove that the theory that equates all λ -terms that don't have a normal form is inconsistent by showing that the following equation is inconsistent in untyped λ calculus:

$$\lambda x y.x y \Omega = \lambda x y.y x \Omega.$$