Semantics and Domain theory Exercises 12

- 1. Which of the following sets are complete lattices.
 - (a) The set of flat natural numbers \mathbb{N}_{\perp} .
 - (b) The set $\mathcal{P}_{\text{fin}}(\mathbb{N})$ of *finite subsets* of \mathbb{N} .
 - (c) The set $\Omega (= \mathbb{N} \cup \{\omega\})$, with the ordering we have seen before).
 - (d) The set of monotone functions from B^T_⊥ to B^T_⊥.
 (Remember that the set of flat booleans with a top element added, B^T_⊥, is a complete lattice.)
- 2. Complete the proof of Proposition 3.1.7. That is, show that in a complete lattice (D, \sqsubseteq) , if we define

$$\prod X := \bigsqcup \{ y \in D \mid y \sqsubseteq X \},\$$

then $\prod X$ is indeed the greatest lower bound (also called the *inf*) of X.

3. Prove the correctness of Definition 3.2.5. To prove this, you have to show that the function

 $\boldsymbol{\lambda} d. \llbracket P \rrbracket_{\rho(x:=d)}$

is continuous for every P and ρ . (You may assume that F and G are continuous and all the other results about continuity from the notes.)

- 4. At the lecture, we have seen the interpretations in D_A of $\mathbf{I} (= \lambda x.x)$, $\mathbf{K} (= \lambda x.\lambda y.x)$ and \mathbf{II} .
 - (a) Compute the interpretation of $\lambda x.x x$.
 - (b) Show that $\llbracket \mathbf{KI} \rrbracket = \{(\beta, (\gamma, c)) \mid c \in \gamma\}$ (without doing a β -reduction first).
- 5. Let Y be an element of D_A and let ρ be a valuation with $\rho(y) = Y$.
 - (a) Compute in D_A the interpretation of $\lambda x.y x$ by expressing $[\![\lambda x.y x]\!]_o$ in terms of Y.
 - (b) Conclude that the η -rule does not hold in D_A . (The η -rule says that $\lambda x.M x = M$ if $x \notin FV(M)$.)
- 6. Use the result of the following exercise $(\llbracket \Omega \rrbracket = \emptyset)$ to
 - (a) compute the interpretation of $\lambda y.\Omega$ in D_A ,
 - (b) compute the interpretation of $\lambda y.y \Omega$ in D_A .
- 7. [Challenging] Show that the interpretation of Ω (= $(\lambda x.x x)(\lambda x.x x)$) in D_A is \emptyset . (Hint: From a $c \in \llbracket \Omega \rrbracket$ you can construct an infinite sequence $(\alpha_i)_{i \in \mathbb{N}}$ with $(\alpha_{i+1}, c) \in \alpha_i$ for all i, which is impossible in D_A .)