1

Semantics and Domain Theory — Notes on lecture 1

Herman Geuvers

Content of the course

semantics: ”assigning meaning to programs” (more generally: to phrases in a formal lan-
guage)

domain theory: the mathematical theory of the sets-with-structure necessary to achieve this

One contrasts

1.1

operational semantics: ”evaluation”
axiomatic semantics: ”logic” (assertions about programs)

denotational semantics: ”"model theory”

Operational semantics

inductive definitions

grammars

systems of inference rules defining derivations of judgments
definition by structural recursion (on syntax, on rules)
proof by induction

specification of behaviour by execution/evaluation

exp = val, evaluation judgments, for apppropriate notions of "exp” (expressions) and ”val”
(values).

config = st, execution judgemnts, for an abstract machine with configurations ”config” and
final states ”st”

styles of operational semantics

— big-step: evaluation/execution all in one go;

— small-step: consider intermediate configurations of an abstract machine; take transi-
tive closure to reach a final state

operational semantics gives an intensional theory of behaviour: how, not what.



1.2 Denotational semantics

e abstract mathematical structures

e behaviour described in terms of mathematical functions operating on such abstract values

e extensional theory of behaviour: what, not how

e "equal values map to equal results”: need notions of equality of abstract programs

e typically recursive (rather than inductive) definitions

e ”a general theory of recursive definitions”

Another view on denotational semantics/domain theory is: ”a general theory of partial-
ity /partial recursive definitions”

1.3 Programming languages

e The simple imperative language (IMP or WHILE):

assignment to variables, conditional execution, unbounded iteration sequential compo-
sition (need to put smaller program together to make larger ones)

origins: Turing/von Neumann model (1930s), ForTran (Backus, 1957)

meanings given by transformations on states (partial functions from variables to values),
so: ... higher-order functions ...

e Functional languages, essentially varieties of lambda calculus (PCF):

function application and abstraction, possibly built on top of some primitives.
origins: Church (untyped 1930s, typed 1940s), LISP (McCarthy, 1957).
meanings given by... already in terms of ... higher-order functions (again!).

defined (usually) by (possibly many) syntactic categories (phrase types) T, E, C, ...
specified by a (context-free) grammar.

each phrase type C gives rise to a set of the well-formed phrases of that type. We
identify C' with this set.

1.4 Domains

A domain is ...

e an appropriate target [C] for interpreting (giving meaning to) elements of C;

e it will turn out to be analysed in terms of suitable set-with-structure (an order relation
reflecting partial states of knowledge).

1.5 Denotational Semantics

A denotational semantics for the phrase type C is simply a mapping

[-]: ¢ — [C].

So we overload [—] in the usual way; these double braces are usually called Scott brackets after
Dana Scott, who basically founded the subject; he was originally a student of Tarski)
[—] should respect/reflect the appropriate structure on C' and [C].



1.6 Summarising

The principal aim of the subject:

to develop the interplay between these two points-of-view on the meaning/behaviour
of programs, that is, to relate

e execution of programs,
e.g. prog, config = config

e mathematical description in terms of functions,
e.g. [prog] : [config] — [config]

taking into account
e partiality
e recursion
e appropriate notions of equality, and simulation, between programs

For next time: DENS (Winskel), Ch. 1 For those who haven’t followed Semantiek en Correctheid:
read pages 7-14 of Nielsen&Nielsen



