
Semantics and Domain Theory – Notes on lecture 1

Herman Geuvers

1 Content of the course

• semantics: ”assigning meaning to programs” (more generally: to phrases in a formal lan-
guage)

• domain theory: the mathematical theory of the sets-with-structure necessary to achieve this

One contrasts

• operational semantics: ”evaluation”

• axiomatic semantics: ”logic” (assertions about programs)

• denotational semantics: ”model theory”

1.1 Operational semantics

• inductive definitions

• grammars

• systems of inference rules defining derivations of judgments

• definition by structural recursion (on syntax, on rules)

• proof by induction

• specification of behaviour by execution/evaluation

• exp⇒ val, evaluation judgments, for apppropriate notions of ”exp” (expressions) and ”val”
(values).

• config⇒ st, execution judgemnts, for an abstract machine with configurations ”config” and
final states ”st”

• styles of operational semantics

– big-step: evaluation/execution all in one go;

– small-step: consider intermediate configurations of an abstract machine; take transi-
tive closure to reach a final state

• operational semantics gives an intensional theory of behaviour: how, not what.

1



1.2 Denotational semantics

• abstract mathematical structures

• behaviour described in terms of mathematical functions operating on such abstract values

• extensional theory of behaviour: what, not how

• ”equal values map to equal results”: need notions of equality of abstract programs

• typically recursive (rather than inductive) definitions

• ”a general theory of recursive definitions”

Another view on denotational semantics/domain theory is: ”a general theory of partial-
ity/partial recursive definitions”

1.3 Programming languages

• The simple imperative language (IMP or WHILE):

– assignment to variables, conditional execution, unbounded iteration sequential compo-
sition (need to put smaller program together to make larger ones)

– origins: Turing/von Neumann model (1930s), ForTran (Backus, 1957)

– meanings given by transformations on states (partial functions from variables to values),
so: ... higher-order functions ...

• Functional languages, essentially varieties of lambda calculus (PCF):

– function application and abstraction, possibly built on top of some primitives.

– origins: Church (untyped 1930s, typed 1940s), LISP (McCarthy, 1957).

– meanings given by... already in terms of ... higher-order functions (again!).

– defined (usually) by (possibly many) syntactic categories (phrase types) T , E, C, ...
specified by a (context-free) grammar.

– each phrase type C gives rise to a set of the well-formed phrases of that type. We
identify C with this set.

1.4 Domains

A domain is ...

• an appropriate target [[C]] for interpreting (giving meaning to) elements of C;

• it will turn out to be analysed in terms of suitable set-with-structure (an order relation
reflecting partial states of knowledge).

1.5 Denotational Semantics

A denotational semantics for the phrase type C is simply a mapping

[[−]] : C → [[C]].

So we overload [[−]] in the usual way; these double braces are usually called Scott brackets after
Dana Scott, who basically founded the subject; he was originally a student of Tarski)

[[−]] should respect/reflect the appropriate structure on C and [[C]].

2



1.6 Summarising

The principal aim of the subject:

to develop the interplay between these two points-of-view on the meaning/behaviour
of programs, that is, to relate

• execution of programs,
e.g. prog, config⇒ config

• mathematical description in terms of functions,
e.g. [[prog]] : [[config]]→ [[config]]

taking into account

• partiality

• recursion

• appropriate notions of equality, and simulation, between programs

For next time: DENS (Winskel), Ch. 1 For those who haven’t followed Semantiek en Correctheid:
read pages 7-14 of Nielsen&Nielsen

3


