Semantics and Domain theory

Exercises 10

1. (Exercise 8.4.1) Suppose that a monotonic function $p:\left(\mathbb{B}_{\perp} \times \mathbb{B}_{\perp}\right) \rightarrow \mathbb{B}_{\perp}$ satisfies

- $p(\mathrm{tt}, \perp)=\mathrm{tt}$,
- $p(\perp, \mathrm{tt})=\mathrm{tt}$,
- $p(\mathrm{ff}, \mathrm{ff})=\mathrm{ff}$.

Show that p coincides with the parallel-or function on Slide 45 in the sense that $p\left(d_{1}, d_{2}\right)=\operatorname{por}\left(d_{1}\right)\left(d_{2}\right)$, for all $d_{1}, d_{2} \in \mathbb{B}_{\perp}$.
2. (Exercise 7.4.2.) For any PCF type τ and closed terms M_{1}, M_{2} of type τ, we have

$$
\begin{equation*}
\left(\forall V: \tau,\left(M_{1} \Downarrow_{\tau} V \Leftrightarrow M_{2} \Downarrow_{\tau} V\right)\right) \Rightarrow M_{1} \cong_{\operatorname{ctx}} M_{2}: \tau \tag{**}
\end{equation*}
$$

Use $\left({ }^{* *}\right)$ to show that β-conversion is valid up to contextual equivalence in PCF, in the sense that for all closed terms $\mathbf{f n} x: \tau_{1} . P: \tau_{1} \rightarrow \tau_{2}$ and $Q: \tau_{1}$,

$$
\left(\mathbf{f n} x: \tau_{1} . P\right) Q \cong_{\mathbf{c t x}} P[Q / x]: \tau_{2} .
$$

3. (Exercise 7.4.3.) We show that the converse of $\left({ }^{* *}\right)$ is not valid at all types
(a) Consider the terms $M_{1}:=\mathbf{f i x}(\mathbf{f n} f:$ nat \rightarrow nat.f) and $M_{2}:=\mathbf{f n} x$: nat.fix $(\mathbf{f n} x:$ nat. $x)$ of type nat \rightarrow nat and use the extensionality property of $\leq_{\text {ctx }}$ at function types (Slide 44) to show that $M_{1} \cong_{c t x} M_{2}$.
(b) Show that the left hand side of $\left({ }^{* *}\right)$ does not hold for these terms M_{1} and M_{2}.
