Semantics and Domain theory Exercises 10

- 1. (Exercise 8.4.1) Suppose that a monotonic function $p : (\mathbb{B}_{\perp} \times \mathbb{B}_{\perp}) \to \mathbb{B}_{\perp}$ satisfies
 - $p(tt, \perp) = tt$,
 - $p(\perp, \mathsf{tt}) = \mathsf{tt},$
 - $p(\mathbf{ff},\mathbf{ff}) = \mathbf{ff}.$

Show that p coincides with the parallel-or function on Slide 45 in the sense that $p(d_1, d_2) = \text{por}(d_1)(d_2)$, for all $d_1, d_2 \in \mathbb{B}_{\perp}$.

2. (Exercise 7.4.2.) For any PCF type τ and closed terms M_1, M_2 of type τ , we have

$$(\forall V : \tau, (M_1 \Downarrow_{\tau} V \Leftrightarrow M_2 \Downarrow_{\tau} V)) \Rightarrow M_1 \cong_{\mathrm{ctx}} M_2 : \tau. \tag{**}$$

Use (**) to show that β -conversion is valid up to contextual equivalence in PCF, in the sense that for all closed terms $\mathbf{fn} x : \tau_1 \cdot P : \tau_1 \to \tau_2$ and $Q : \tau_1$,

$$(\mathbf{fn} x : \tau_1. P) Q \cong_{\mathrm{ctx}} P[Q/x] : \tau_2.$$

- 3. (Exercise 7.4.3.) We show that the converse of (**) is not valid at all types
 - (a) Consider the terms $M_1 := \mathbf{fix}(\mathbf{fn} f : \mathbf{nat} \to \mathbf{nat}.f)$ and $M_2 := \mathbf{fn} x : \mathbf{nat}.\mathbf{fix}(\mathbf{fn} x : \mathbf{nat}.x)$ of type $\mathbf{nat} \to \mathbf{nat}$ and use the extensionality property of \leq_{ctx} at function types (Slide 44) to show that $M_1 \cong_{\mathrm{ctx}} M_2$.
 - (b) Show that the left hand side of $(^{**})$ does not hold for these terms M_1 and M_2 .