Semantics and Domain theory

Exercises 12

1. Prove the correctness of Definition 3.2.5. To prove this, you have to show that the function

$$\lambda d. \llbracket P \rrbracket_{\rho(x:=d)}$$

is continuous for every P and ρ . (You may assume that F and G are continuous and all the other results about continuity from the notes.)

- 2. At the lecture, we have seen the interpretations in D_A of $\mathbf{I} (= \lambda x.x)$, $\mathbf{K} (= \lambda x.\lambda y.x)$ and \mathbf{II} .
 - (a) Compute the interpretation of $\lambda x.x.x.$
 - (b) Show that $[\![\mathbf{KI}]\!] = \{(\beta, (\gamma, c)) \mid c \in \gamma\}$ (without doing a β -reduction first).
- 3. Let Y be an element of D_A and let ρ be a valuation with $\rho(y) = Y$.
 - (a) Compute in D_A the interpretation of $\lambda x.y.x$ by expressing $[\![\lambda x.y.x]\!]_{\rho}$ in terms of Y.
 - (b) Conclude that the η -rule does not hold in D_A . (The η -rule says that $\lambda x.M x = M$ if $x \notin FV(M)$.)
- 4. Use the result of the following exercise ($\llbracket \Omega \rrbracket = \emptyset$) to
 - (a) compute the interpretation of $\lambda y.\Omega$ in D_A ,
 - (b) compute the interpretation of $\lambda y.y \Omega$ in D_A .
- 5. [Challenging] Show that the interpretation of Ω (= $(\lambda x.x x)(\lambda x.x x)$) in D_A is \emptyset .

(Hint: From a $c \in \llbracket \Omega \rrbracket$ you can construct an infinite sequence $(\alpha_i)_{i \in \mathbb{N}}$ with $(\alpha_{i+1}, c) \in \alpha_i$ for all i, which is impossible in D_A .)

6. Prove that, for M a closed λ -term, if M has a head-normal-form, then there is a sequence of terms P_1, \ldots, P_n such that $M P_1 \ldots P_n =_{\beta} \mathbf{I}$.

(For closed terms, the reverse implication also holds, so this criterion is equivalent to having a hnf. This is where the terminology solvable comes from.)