Semantics and Domain theory

Exercises 3

- 1. Do exercise 2.3.1 of Winskel at the end of Chapter 2, that is prove that the set of partial functions from X to Y, $X \to Y$, forms a domain, with the definitions of ordering and lub given on slide 10 (or the equivalent definitions given at the lecture).
- 2. Which of the following is a domain? (In each case, choose a proper definition of 'lub'; prove your answer.)
 - (a) $(\mathcal{P}(X),\subseteq)$, where $\mathcal{P}(X)$ is the powerset of X and \subseteq is the usual subset ordering.
 - (b) $([0,1], \leq)$, where [0,1] is the unit interval and \leq is the usual ordering on the real numbers.
 - (c) $([0,1] \cap \mathbb{Q}, \leq)$, where \cap is the intersection and \mathbb{Q} is the set of rational numbers.
 - (d) (Σ^*, \sqsubseteq) , where Σ^* is the set of words over the alphabet $\Sigma := \{a, b\}$ and \sqsubseteq is the prefix ordering, defined by $w \sqsubseteq wv$ for all $w, v \in \Sigma^*$.
 - (e) $(\Sigma^* \cup \Sigma^\omega, \sqsubseteq)$, where Σ^ω is the set of infinite words over the alphabet $\Sigma := \{a, b\}$ and \sqsubseteq is the prefix ordering, defined by $w \sqsubseteq wv$ for all $w \in \Sigma^*$, $v \in \Sigma^* \cup \Sigma^\omega$ and $v \sqsubseteq v$ for all $v \in \Sigma^* \cup \Sigma^\omega$.
- 3. Do exercise 2.3.2 of Winskel at the end of Chapter 2, that is prove that the function $f_{b,c}$ in the definition of the denotational semantics of **while** B **do** C is continuous.
- 4. Let $(d_i)_{i\geq 0}$ and $(e_i)_{i\geq 0}$ be chains in a domain (D, \sqsubseteq) . Suppose that $(d_i)_{i\geq 0}$ is majorized by $(e_i)_{i\geq 0}$, that is: $\forall i \exists j (d_i \sqsubseteq e_j)$. Prove that $\sqcup_{i\geq 0} d_i \sqsubseteq \sqcup_{i\geq 0} e_i$.
- 5. Suppose that in the domain (D, \sqsubseteq) , all chains are eventually constant, that is: for all chains $(d_i)_{i\geq 0}$ there exists an n such that $d_n=d_{n+1}=d_{n+2}=\ldots$ Show that every monotone $f:D\to D$ is continuous.