Semantics and Domain theory

Exercises 4

- 1. Let (D, \sqsubseteq) be the domain of finite and infinite sequences over $\Sigma := \{a, b\}$ with \sqsubseteq the prefix ordering. (So $D = \Sigma^* \cup \Sigma^{\omega}$.)
 - (a) Which of the following functions $f: D \to D$ is monotone / continuous?
 - i. f(s) = s with all a's removed.
 - ii. f(s) = abba if s is finite; f(s) = s if s is infinite.
 - iii. f(s) = abbas.
 - iv. f(s) = a if s contains finitely many b's; f(s) = b if s contains infinitely many b's
 - (b) For each of the functions f in (a) that is continuous, compute the least fixed point of f.
- 2. Let (D, \sqsubseteq) be a domain with some element d_0 and let $f: D \to D$ be continuous. Suppose $d_0 \sqsubseteq f(d_0)$. Prove that $\sqcup_{i \geq 0} f^i(d_0)$ is a fixed point of f.
- 3. For the disjoint union of two domains (also called the binary sum of domains), there are two choices: the coalesced sum (or smashed sum) $D +_c E$, or the separated sum $D +_s E$. For the coalesced sum, the set $D +_c E$ is defined as

$$\{\bot\} \cup \{(0,d) \mid d \in D, d \neq \bot_D\} \cup \{(1,e) \mid e \in E, e \neq \bot_E\}$$

For the separated sum, the set $D +_s E$ is defined as

$$\{\bot\} \cup \{(0,d) \mid d \in D\} \cup \{(1,e) \mid e \in E\}$$

So, the separated sum introduces a new \perp element, whereas the coalesced sum "coalesces (or smashes) them together".

Let two domains (D, \sqsubseteq_D) and (E, \sqsubseteq_E) be given.

- (a) Define the partial ordering \sqsubseteq on $D +_s E$ and give the \bot -element.
- (b) Define the partial ordering \sqsubseteq on $D +_c E$ and give the \bot -element.
- (c) For $(f_i)_{i>0}$ a chain in $D+_s E$ define $\sqcup_{i>0} f_i$ and prove that it is the least upperbound.
- (d) For $(f_i)_{i>0}$ a chain in $D+_c E$ define $\sqcup_{i>0} f_i$ and prove that it is the least upperbound.
- (e) Define injections in $E \to D +_s E$ and in $E \to D +_s E$ that are continuous. (You don't have to prove that they are continuous.)
- (f) Define injections in $E \to D +_c E$ and in $E \to D +_c E$ that are continuous. (You don't have to prove that they are continuous.)
- (g) (*) For F a domain and $f: D \to F$, $g: E \to F$ we want to define a continuous function $[f,g]: D+E \to F$ such that $[f,g](\mathsf{inl}(x)) = f(x)$ and $[f,g](\mathsf{inr}(x)) = g(x)$. Show how to define [f,g] for the case of $D+_cE$ and for the case of $D+_sE$. For one of these cases, we can only define [f,g] if we place additional requirements on f and g. Which?