Semantics and Domain theory

Exercises 4

1. Let (D, \sqsubseteq) be the domain of finite and infinite sequences over $\Sigma:=\{a, b\}$ with \sqsubseteq the prefix ordering. (So $D=\Sigma^{*} \cup \Sigma^{\omega}$.)
(a) Which of the following functions $f: D \rightarrow D$ is monotone / continuous?
i. $f(s)=s$ with all a 's removed.
ii. $f(s)=a b b a$ if s is finite; $f(s)=s$ if s is infinite.
iii. $f(s)=a b b a s$.
iv. $f(s)=a$ if s contains finitely many b 's; $f(s)=b$ if s contains infinitely many b 's
(b) For each of the functions f in (a) that is continuous, compute the least fixed point of f.
2. Let (D, \sqsubseteq) be a domain with some element d_{0} and let $f: D \rightarrow D$ be continuous. Suppose $d_{0} \sqsubseteq f\left(d_{0}\right)$. Prove that $\sqcup_{i \geq 0} f^{i}\left(d_{0}\right)$ is a fixed point of f.
3. For the disjoint union of two domains (also called the binary sum of domains), there are two choices: the coalesced sum (or smashed sum) $D+{ }_{c} E$, or the separated sum $D+{ }_{s} E$. For the coalesced sum, the set $D+{ }_{c} E$ is defined as

$$
\{\perp\} \cup\left\{(0, d) \mid d \in D, d \neq \perp_{D}\right\} \cup\left\{(1, e) \mid e \in E, e \neq \perp_{E}\right\}
$$

For the separated sum, the set $D+{ }_{s} E$ is defined as

$$
\{\perp\} \cup\{(0, d) \mid d \in D\} \cup\{(1, e) \mid e \in E\}
$$

So, the separated sum introduces a new \perp element, whereas the coalesced sum "coalesces (or smashes) them together".
Let two domains $\left(D, \sqsubseteq_{D}\right)$ and $\left(E, \sqsubseteq_{E}\right)$ be given.
(a) Define the partial ordering \sqsubseteq on $D+{ }_{s} E$ and give the \perp-element.
(b) Define the partial ordering \sqsubseteq on $D+{ }_{c} E$ and give the \perp-element.
(c) For $\left(f_{i}\right)_{i \geq 0}$ a chain in $D+{ }_{s} E$ define $\sqcup_{i \geq 0} f_{i}$ and prove that it is the least upperbound.
(d) For $\left(f_{i}\right)_{i \geq 0}$ a chain in $D+{ }_{c} E$ define $\sqcup_{i \geq 0} f_{i}$ and prove that it is the least upperbound.
(e) Define injections inl : $D \rightarrow D+{ }_{s} E$ and inr: $E \rightarrow D+{ }_{s} E$ that are continuous. (You don't have to prove that they are continuous.)
(f) Define injections inl : $D \rightarrow D+{ }_{c} E$ and inr: $E \rightarrow D+{ }_{c} E$ that are continuous. (You don't have to prove that they are continuous.)
(g) $\left(^{*}\right)$ For F a domain and $f: D \rightarrow F, g: E \rightarrow F$ we want to define a continuous function $[f, g]: D+E \rightarrow F$ such that $[f, g](\operatorname{inl}(x))=f(x)$ and $[f, g](\operatorname{inr}(x))=g(x)$.
Show how to define $[f, g]$ for the case of $D+{ }_{c} E$ and for the case of $D+{ }_{s} E$. For one of these cases, we can only define $[f, g]$ if we place additional requirements on f and g. Which?

