Semantics and Domain theory Exercises 9

- 1. Prove Theorem 6.4.1 for the inductive cases \Downarrow_{pred} and \Downarrow_{ifl} . Remember that Theorem 6.4.1 states that for all closed expressions M and V and type τ , if $M \Downarrow_{\tau} V$, then $\llbracket M \rrbracket = \llbracket V \rrbracket$. It is proved by induction on the derivation of $M \Downarrow_{\tau} V$.
- 2. Prove the following properties (by induction on τ). Here, M, M_1, M_2 range over closed terms, d_1, d_2 are domain elements.
 - (a) If $d_2 \sqsubseteq d_1$ and $d_1 \triangleleft_{\tau} M_1$, then $d_2 \triangleleft_{\tau} M_1$.
 - (b) If $d_1 \triangleleft_{\tau} M_1$ and $\forall V(M_1 \Downarrow_{\tau} V \Rightarrow M_2 \Downarrow_{\tau} V)$, then

 $d_1 \triangleleft_{\tau} M_2$

These properties constitute Lemma 7.2.1 (iii).

3. Remember that \triangleleft_{τ} denotes the approximation relation (slide 39). Show that, if $d \triangleleft_{nat} M$, $e \triangleleft_{nat} N$ and $b \triangleleft_{bool} P$, then

$$if(b, d, e) \triangleleft_{nat} if P then M else N$$

(This is the "if" inductive case in the proof of the Fundamental Property, Slide 40)

4. Prove that $\operatorname{fn} x : \operatorname{nat.succ}(\operatorname{pred} x) \leq_{\operatorname{ctx}} \operatorname{fn} x : \operatorname{nat.} x$ by using the Extensionality properties on Slide 44.