Semantics and Domain theory

Exercises 1

At the lecture, we gave a denotational semantics for the language \(\mathcal{L} \) given by the grammar

\[
\begin{align*}
 b &::= 0 | 1 \\
n &::= b | n b
\end{align*}
\]

NB 0 and 1 are symbols, not the numbers.

The semantics is given by the model \(\mathbb{N} \), the natural numbers, and the interpretation

\[
\begin{align*}
 [0] &:= 0 \\
 [1] &:= 1 \\
 [n b] &:= 2 \cdot [n] + [b]
\end{align*}
\]

In the lecture, we have recursively defined the operation \(P(n) \), which prefixes a binary numeral \(n \) with a leading 0 as follows.

\[
\begin{align*}
P(0) &:= 0 0 \\
P(1) &:= 0 1 \\
P(n b) &:= P(n) b
\end{align*}
\]

We have given an operational semantics \(\rightarrow \) via the rules

\[
\begin{align*}
0 &\rightarrow 0 0 \\
1 &\rightarrow 0 1 \\
\frac{n \rightarrow m}{n b \rightarrow m b}
\end{align*}
\]

Exercises:

1. Define the operation \(S(n) \), which computes the binary numeral which is the successor of \(n \).

2. (a) Give an operational semantics for \(S(n) \), in the form of a relation \(n \rightarrow m \) such that \(S(n) = m \) iff \(n \rightarrow m \)

(b) Prove that \(S(n) = m \) iff \(n \rightarrow m \)

3. Prove \([S(n)] = [n] + 1 \) for all \(n \).

4. (a) Compute the denotational semantics of \(S_1 := x := x + 1 ; \ y := x + x \)

(b) Compute the denotational semantics of \(S_2 := \) if \(x > 0 \) then \(x := 1 \) else \(x := -1 \)

NB Your answer should be a "state transformers", i.e. an element of \(\text{State} \rightarrow \text{State} \), the set of partial functions from \(\text{State} \) to \(\text{State} \). For us a state is a function from locations (variables) to integers, \(r : \mathbb{L} \rightarrow \mathbb{Z} \).