Semantics and Domain theory

Exercises 10

Exercises from the dI-domains notes

- 1. Suppose that a monotonic function $p:(\mathbb{B}_{\perp}\times\mathbb{B}_{\perp})\to\mathbb{B}_{\perp}$ satisfies
 - $p(\operatorname{tt}, \perp) = \operatorname{tt},$
 - $p(\perp, \operatorname{tt}) = \operatorname{tt}$,
 - p(ff, ff) = ff.

Show that p coincides with the parallel-or function (on Slide 72 of the notes of Pitts) in the sense that $p(d_1, d_2) = \text{por}(d_1)(d_2)$, for all $d_1, d_2 \in \mathbb{B}_{\perp}$.

Answer:

As p is monotonic, we have $p(\mathsf{tt},\mathsf{ff}) = p(\mathsf{ff},\mathsf{tt}) = p(\mathsf{tt},\mathsf{tt}) = \mathsf{tt}$. This leaves 3 entries in the table: $p(\bot,\bot)$, $p(\mathsf{ff},\bot)$ and $p(\bot,\mathsf{ff})$. As $(\mathsf{ff},\bot) \sqsubseteq (\mathsf{ff},\mathsf{ff})$ and $(\mathsf{ff},\bot) \sqsubseteq (\mathsf{ff},\mathsf{tt})$, we must have $p(\mathsf{ff},\bot) \sqsubseteq p(\mathsf{ff},\mathsf{ff})$ and $p(\mathsf{ff},\bot) \sqsubseteq p(\mathsf{ff},\mathsf{tt})$, and therefore $p(\mathsf{ff},\bot) = \bot$. Similarly $p(\bot,\mathsf{ff}) = \bot$, and therefore $p(\bot,\bot) = \bot$.

End answer....

2. Show that the evaluation relation for PCF+por (Slide 77, where rules for $\mathbf{por}(M_1, M_2) \Downarrow V$ have been added to PCF) is still deterministic: If $M \Downarrow V$, then for all V', if $M \Downarrow V'$, then V = V'. This is again proved by induction on the derivation of $M \Downarrow V$; do the case for the new \mathbf{por} -rules.

Answer:

We have to prove that, if $M \downarrow V$, then for all V', if $M \downarrow V'$, then V = V'. This is proved by induction on the derivation of $M \downarrow V$. We do the case for the last rule being the **por**-rules:

$$\frac{M_1 \Downarrow \mathbf{true}}{\mathbf{por}(M_1, M_2) \Downarrow \mathbf{true}} \Downarrow_{\mathbf{por} 1} \quad \frac{M_2 \Downarrow \mathbf{true}}{\mathbf{por}(M_1, M_2) \Downarrow \mathbf{true}} \Downarrow_{\mathbf{por} 2} \quad \frac{M_1 \Downarrow \mathbf{false} \quad M_2 \Downarrow \mathbf{false}}{\mathbf{por}(M_1, M_2) \Downarrow \mathbf{false}} \Downarrow_{\mathbf{por} 3}$$

We only treat **por**1 and **por**3. (The rule **por**2 is similar to **por**1.) Suppose

$$\frac{M_1 \Downarrow \mathbf{true}}{\mathbf{por}(M_1, M_2) \Downarrow \mathbf{true}} \Downarrow_{\mathbf{por}1}$$

Now, if $\mathbf{por}(M_1, M_2) \Downarrow V'$, this could have been obtained by $\Downarrow_{\mathbf{por}1}, \Downarrow_{\mathbf{por}2}$ or $\Downarrow_{\mathbf{por}3}$.

- $(\downarrow_{\mathbf{por}1})$ Then $V' = \mathbf{true}$ and done.
- $(\downarrow_{\mathbf{por}^2})$ Then also $V' = \mathbf{true}$ and done.
- $(\Downarrow_{\mathbf{por}3})$ Then $M_1 \Downarrow \mathbf{false}$ and by induction hypohesis: $\mathbf{false} = \mathbf{true}$, contradiction, so $(\Downarrow_{\mathbf{por}3})$ is not the last rule.

Suppose

$$\frac{M_1 \Downarrow \mathbf{false} \ \ M_2 \Downarrow \mathbf{false}}{\mathbf{por}(M_1, M_2) \Downarrow \mathbf{false}} \Downarrow_{\mathbf{por}3}$$

Now, if $\mathbf{por}(M_1, M_2) \Downarrow V'$, this could have been obtained by $\Downarrow_{\mathbf{por}1}, \Downarrow_{\mathbf{por}2}$ or $\Downarrow_{\mathbf{por}3}$.

- $(\downarrow_{\mathbf{por}1})$ Then $V' = \mathbf{true}$ and by induction hypohesis: $\mathbf{false} = \mathbf{true}$, contradiction, so $(\downarrow_{\mathbf{por}1})$ is not the last rule.
- $(\downarrow_{\mathbf{por}2})$ Then $V' = \mathbf{true}$ and by induction hypohesis: $\mathbf{false} = \mathbf{true}$, contradiction, so $(\downarrow_{\mathbf{por}2})$ is not the last rule.

 $(\downarrow_{\mathbf{por}3})$ Then $V' = \mathbf{false}$ and done.

End answer....

3. (a) Describe the compact elements of $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ and prove that these are indeed the compact elements.

Answer:

We look at the domain, $\operatorname{dom}(f)$ of a function $f: \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$, which is defined as $\operatorname{dom}(f) = \{x \in \mathbb{N}_{\perp} \mid f(x) \neq \bot\}$. Remember that $f \sqsubseteq g$ iff $\operatorname{dom}(f) \subseteq \operatorname{dom}(g) \land \forall x \in \operatorname{dom}(f) \, (f(x) = g(x))$.

If $f: \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ has an **infinite domain**, it is not compact: the set

$$F := \{ f_Y \mid \operatorname{dom}(f_Y) = Y \subseteq \operatorname{dom}(f), Y \text{ is finite and } \forall x \in Y(f_Y(x) = f(x)) \}$$

is a directed set and $\bigsqcup F = f$, but there is no f_Y such that $f \sqsubseteq f_Y$. (NB. That F is directed can be seen as follows: if f_Y and f_Z are elements of F, then $f_{Y \cup Z}$ is also an element of F and $f_Y, f_Z \sqsubseteq f_{Y \cup Z}$.)

If $f: \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ has a **finite domain**, it is compact: let $\{x_1, \ldots, x_n\}$ be the domain of f and let F be a directed set of functions with $f \sqsubseteq \bigsqcup F$. Then for every x_i there is a $g_i \in F$ with $x_i \in \text{dom}(g_i)$ and $g_i(x_i) = f(x_i)$. As F is directed, there is a $g \in F$ with $g_1, \ldots, g_n \sqsubseteq g$. But then $\text{dom}(f) \subseteq \text{dom}(g)$ and so $f \sqsubseteq g$.

So, the basis of the domain $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ is

$$\mathbf{B}_{\mathbb{N}_{+} \to \mathbb{N}_{+}} = \{ f \mid f : \mathbb{N}_{\perp} \to \mathbb{N}_{\perp} \text{ with } \operatorname{dom}(f) \text{ finite} \}$$

End answer.....

(b) Show that $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ is an algebraic dcpo.

Answer:

Given $f: \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$, consider:

$$F := \{ g \mid g \in \mathbf{B}_{\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}} \text{ and } g \sqsubseteq f \}.$$

Then the g in F are exactly the functions with a finite domain such that $g \sqsubseteq f$.

For every $x \in \text{dom}(f)$ there is a $g \in F$ with $x \in \text{dom}(g)$ and g(x) = f(x). So $f \subseteq \coprod F$.

End answer.....

- 4. Let X be a set and let $\wp(X)$ be the power set of X ordered by inclusion \subseteq .
 - (a) Describe the compact elements of $\wp(X)$ and prove that these are indeed the compact elements..

Answer:

If $Y \subseteq X$ and Y is **infinite**, it is not compact: the set

$$Y_{\text{fin}} := \{ Z \mid Z \subseteq Y, Z \text{ finite} \}$$

is a directed set and $\bigcup Y_{\text{fin}} \stackrel{*}{=} Y$, but there is no $Z \in Y_{\text{fin}}$ such that $Y \subseteq Z$.

NB1. Y_{fin} is directed because if Z_1 and Z_2 are elements of Y_{fin} , then

 $Z_1 \cup Z_2$ is also an element of Y and $Z_1, Z_2 \subseteq Z_1 \cup Z_2$.

NB2. For $\bigcup Y_{\text{fin}} \stackrel{*}{=} Y$: If $y \in \bigcup Y_{\text{fin}}$, then $y \in Z \subseteq Y$ for some Z, so $y \in Y$. If $y \in Y$, then $y \in \{y\}$ and $\{y\} \in Y_{\text{fin}}$, so $y \in \bigcup Y_{\text{fin}}$.

If $Y \subseteq X$ and Y is **finite**, it is compact: suppose $Y = \{y_1, \dots, y_n\}$ and let W be a directed set of subsets with $\bigcup W = Y$. Then for every y_i there is a $Z_i \in W$ with $y_i \in Z_i$. As W is directed, there is a $Z \in W$ with $Z_1 \cup \ldots \cup Z_n \subseteq Z$. But then $Y \subseteq Z$.

So, the basis of the domain $\wp(X)$ is

$$\mathbf{B}_{\wp(X)} = \{ Y \mid Y \subseteq X \text{ with } Y \text{ finite} \}$$

and note that if X is finite, then $\mathbf{B}_{\wp(X)}=\wp(X)$ (all elements are compact).

End answer....

(b) Show that $\wp(X)$ is an algebraic dcpo.

$$Y_{\text{fin}} = \{ Z \mid Z \subseteq Y, Z \text{ finite} \}$$

and we need to show that $Y = \bigcup Y_{\text{fin}}$, which we have done in the answer to Exercise 4a: see the NB2.

End answer....

- 5. Suppose we are in a dcpo where each pair of elements has a glb. Show that $\forall x, y (x \sqsubseteq y \Leftrightarrow x = x \sqcap y)$.
- 6. (a) Prove that \mathbb{N}_{\perp} satisfies (axiom d):

$$\forall x, y, z \in \mathbb{N} \mid (y \uparrow z \Rightarrow x \sqcap (y \sqcup z) = (x \sqcap y) \sqcup (x \sqcap z)).$$

- (b) Prove that $\mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ (the set of Scott continuous functions) satisfies (axiom d).
- 7. We are in a bounded complete p.o. and we consider the property (*) (used in stability)

$$\forall x, y \in D(x \uparrow y \to f(x \sqcap y) = f(x) \sqcap f(y)) \tag{*}$$

Show that, if f satisfies (*), then it is monotone.

- 8. (a) Define all possible different "AND" functions as monotone functions (in $\mathbb{B}_{\perp} \times \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$).
 - (b) Show that 3 of your functions can be defined in PCF.
 - (c) Now show that one of your functions cannot be defined in PCF
 - i. by semantic means (using dI-domains).
 - ii. by using the non-definability of por
- 9. Prove that the identity function $I: \mathbb{N}_{\perp} \to \mathbb{N}_{\perp}$ is not very finite.
- 10. Prove that, in a bounded complete dcpo, every non-empty set X has a greatest lower bound, $\prod X$.