CHAPTER 3

DENOTATIONAL SEMANTICS

Semantics of lambda calculus: an introduction

In natural languages, one can explain the meaning of a particular word in two ways. One can *translate* the word into another language (of which the meaning is already known); the second way is to describe the *use* or *behaviour* of the word in the language itself.

Lambda calculus can be considered as a (formal) language. A λ -term (initially just a sequence of symbols) can be given a meaning in the abovementioned two ways. This leads to the notions of *denotational* and *operational* semantics respectively.

Denotational semantics

In the denotational approach, λ -terms are translated into another structure (usually some mathematical domain).

This semantics is usually given in a modular (or 'syntax-driven') way by equipping D with a binary application operation \cdot and defining e.g.

$$\llbracket MN \rrbracket = \llbracket M \rrbracket \cdot \llbracket N \rrbracket,$$

or, in a functional notation,

$$[MN] = [M]([N])$$

since M is considered as a function and N as its argument. Because in λ -calculus the terms serve both as arguments and as functions applied to these arguments, one would like a domain D such that $D \rightarrow D$ (the space of functions from D to D) is isomorphic to D. For cardinality reasons this is impossible. The mathematician D.S. Scott solved this problem by restricting $D \rightarrow D$ to the set $[D \rightarrow D]$ of so-called continuous functions on D. He worked with complete lattices and constructed a D such that $[D \rightarrow D] \cong D$. It turned out that for a model of the λ -calculus it is sufficient to find a D such that $[D \rightarrow D]$ is a so-called retract of D.

The interpretation $[\cdot]$ is sound if, roughly spoken,

$$\lambda \vdash M = N \Rightarrow [M] = [N],$$

so terms that are equal modulo λ -convertibility are given the same value in the model. This leads to the notion of λ -algebra.

This illustrates two motives for studying denotational semantics: firstly, by the translation one *identifies* certain distinct syntactical objects, e.g. $KI\Omega$ and II. Furthermore, by examining equality of terms in a given model $\langle D, \llbracket \cdot \rrbracket \rangle$ one obtains insight in possible extra identifications on the syntactical level. This has lead, e.g., to a good representation of the notion 'undefined' (known from recursion theory) in the lambda calculus.

Operational semantics

Operational semantics of λ -calculus is concerned with the reduction behaviour of λ -terms. This relates a λ -term M to the set of all possible 1-step reducts, and so on. Rather than studying the full reduction graph $G_{\beta}(M)$ one often considers one particular reduction path. Such a path is usually obtained from a reduction strategy, choosing in a term one or more redexes to be reduced.

This approach is common in the description of semantics of functional programming languages: the result of a functional program depends on the choice of a particular evaluation order. Therefore the often mentioned correspondence between functional programming languages and λ -calculus is preferably expressed by

functional programming language $\approx \lambda$ -calculus + reduction strategy.

3.1. Complete lattices

3.1.1. <u>Definition</u>. Let D be a set, and let $\subseteq \subseteq D \times D$ be an ordering. (D, \subseteq) is a <u>partial ordering</u> if for all $x, y, z \in D$ one has

 $x \in \mathcal{X}$ (\subseteq is reflexive); $(x \subseteq y \ \& y \subseteq z) \implies x \subseteq z$ (\subseteq is transitive); $(x \subseteq y \ \& y \subseteq x) \implies x = y$ (\subseteq is antisymmetric).

- 3.1.2. <u>Definition</u>. Let (D, \subseteq) be a partial ordering, $a \in D$, and $X \subseteq D$.
 - (i) a is an upper bound of X (notation $X \subseteq a$) if $\forall x \in X$ $x \subseteq a$.
- a is a <u>lower bound</u> of X (notation $a \in X$) if $\forall x \in X$ $a \in x$.
- (ii) a is the supremum of X (notation $a = \sup X$, $a = \coprod X$) if
 - (1) X Ea ("a is an upper bound of X");
- (2) for all $b \in D$: if $X \subseteq b$, then $a \subseteq b$ ("a is the least upper bound of X").

Note that this definition implies that suprema are unique.

3.1.3. <u>Definition</u>. Let D be a set, and $E \in \mathcal{R}(D \times D)$.

- (D, E) is a complete lattice if
 - (1) (D, E) is a partial ordering;
 - (2) for all X & D there is a & D such that a = sup X.

3.1.4. <u>Proposition</u>. Each complete lattice (D, E) has a largest element (top, T) and a least element (bottom, L).

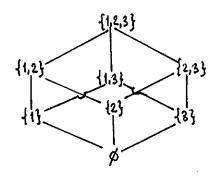
Proof. Take

$$T = \sup \mathcal{D};$$

 $L = \sup \phi$ (!).

3.1.5. Examples. (i) Let A be a set. Then $(\mathcal{P}(A), \subseteq)$ is a complete lattice with for $X \subseteq \mathcal{P}(A)$ sup $X = \bigcup_{S \in X} S$.

The following picture shows $(p(\{1,2,3\}), \subseteq)$.



- (ii) $([0,1]_R, \leq)$ is a complete lattice.
- (iii) ([0,1] $_{\mathbb{Q}}$, \leq) is not a complete lattice. For example, the set

{x \in [0,1] \(\) \ 2x2 < 1}

has no supremum in [0,1] a.

3.1.6. <u>Definition</u>. Let (D, E) be a partial ordering, $a \in D$, and $X \subseteq D$. a is the <u>infimum</u> of X (notation $a = \inf X$, $a = \prod X$) if

(2) for all $b \in D$: $b \subseteq X \implies b \subseteq a$ ("a is the greatest lower bound of X").

3.1.7. <u>Proposition</u>. Let (D, \subseteq) be a complete lattice. Then for all $X \subseteq D$ the infimum inf X exists.

<u>Proof.</u> One easily verifies that inf $X = \sup \{y \in D \mid y \in X\}$.

Below (D, Ξ) , (D', Ξ') , (D'', Ξ'') , ... range over complete lattices.

3.1.8. Notation. For $x, y \in D$ we write $x \sqcup y = \sqcup \{x,y\}$

and

 $x \sqcap y = \prod \{x,y\}.$

3.1.g. <u>Definition</u>. Let X S D. X is <u>directed</u> if

Vx E X Yy E X F T E T & Y E T].

3.1.10. Definition. Let $f: D \rightarrow D'$ be a function.

- (i) f is monotonic if for all $x,y \in D$ $x \in y \implies f(x) \in f(y)$.
- (ii) f is <u>continuous</u> if for all directed $X \subseteq D$ one has $f(\sup X) = \sup f(X)$ (= $\sup \{f(x) \mid x \in X\}$).
- 3.1.11. <u>Proposition</u>. Let $f: D \to D'$ be a function. Then f is continuous $\Rightarrow f$ is monotonic.

 \underline{Proof} . (\Rightarrow) Suppose f is continuous. Note that for $x,y \in D$ with $x \subseteq y$ one has

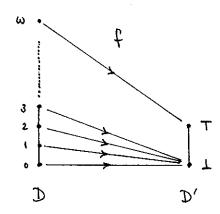
х Ц у = у.

There fore

 $f(x) \sqcup f(y) = f(y).$

Hence $f(x) \stackrel{\cdot}{=} f(y)$ so f is monotonic.

(#) A counterexample is suggested by the following picture.



Clearly f is monotonic, but

 $f(\sup\{0,1,2,\cdots\}) = f(\omega) = T \neq \bot = \sup f(\{0,1,2,\cdots\}). \boxtimes$

3.1.12. <u>Proposition</u>. Let $f: D \to D'$, $g: D' \to D''$. If f and g are monotonic (continuous), then $g \circ f: D \to D''$ is monotonic (continuous).

<u>Proof.</u> Straightforward; note that for directed $X \subseteq D$, f(X) is also directed by monotonicity of f. \boxtimes

3.1.13. <u>Definition</u>. Let $X \subseteq D \times D'$. Then $(X)_0 = \{x \in D \mid \exists x' \in D' \mid (x, x') \in X\};$ $(X)_1 = \{x' \in D' \mid \exists x \in D \mid (x, x') \in X\}.$

3.1.14. <u>Definition</u>. (i) Given D, D', let $D \times D'$ be the carthesian product partially ordered by $(x,x') \equiv (y,y')$ iff $x \equiv y \ \& x' \equiv 'y'$.

(ii) Let D, D' be given. Define $[D \to D'] = \{ f: D \to D' | f \text{ is continuous} \}.$

This set can be ordered pointwise: $f \sqsubseteq g \quad \text{iff} \quad \forall x \in D \quad f(x) \sqsubseteq' g(x).$

3.1.15. <u>Proposition</u>. (i) $D \times D'$ is a complete lattice; for $X \subseteq D \times D'$ one has

 $\coprod X = (\coprod (X)_{\circ}, \coprod (X)_{1}).$

(ii) Let $\{f_i\}_i$ be a collection of continuous maps $f_i: D \to D'$.

Define $f: D \to D'$ by $f(x) = \sup (f_i(x))$. Then f is continuous and in $[D \to D']$ one has $f = \sup f_i$. Therefore $[D \to D']$ is a complete lattice.

Proof. (i) Easy.

(ii) Let $X \subseteq D$ be directed. Then

$$f(\sup X) = \sup_{i} f_{i}(\sup X)$$

= $\sup_{x \in X} \sup_{i} f_{i}(x)$, by continuity of f_{i}
= $\sup_{x \in X} \sup_{i} f_{i}(x)$ (see practicum)
= $\sup_{x \in X} f(x)$.

Therefore f is continuous. Moreover $\{f_i\}_i \subseteq f$, by definition of \subseteq . Suppose $\{f_i\}_i \subseteq g$, then $\forall i, x \in f_i(x) \subseteq g(x)$ so $\forall x \in f_i(x) \subseteq g(x)$. Hence $f \subseteq g$.

3.1.16. Remark. If λx . denotes meta- λ -abstraction, then we have as a consequence of proposition 3.1.15 (ii) sup λx . $f_i(x) = \lambda x$. sup $(f_i(x))$,

i.e. sup commutes with A.

3.1.17. Theorem. Let $f \in [D \rightarrow D]$. Then f has a least fixed point defined by

$$a = Fix(f) = \sup_{n} f^{n}(1).$$

<u>Proof.</u> Note that the set $\{f^n(L) \mid n \in \mathbb{N}\}$ is directed: $L \subseteq f(L)$ so by monotonicity $f(L) \subseteq f^2(L)$, etcetera. Therefore $L \subseteq f(L) \subseteq f^2(L) \subseteq \cdots$. Hence

$$f(a) = \sup_{n} f(f^n(L))$$

$$= \sup_{n} f^{n+1}(L)$$

Suppose x is another fixedpoint of f. Then f(x) = x and $L \subseteq x$, so by monotonicity $f^n(L) \subseteq f^n(x) = x$. Therefore $a \subseteq x$. \boxtimes

3.1.18. <u>Lemma</u>. Let $f: D \times D' \to D''$. Then f is continuous if f is continuous in each of its variables seperately (i.e. $\lambda \times f(x, x_0')$ and $\lambda \times f(x_0, x')$ are continuous for all x_0, x_0').

<u>Proof.</u> (\Rightarrow) Let f be continuous, and $x_0' \in D'$. In order to show that $h = \lambda x$. $f(x, x_0')$ is continuous, define $g: D \to D \times D'$ by

$$g(x) = (x, x_0).$$

Clearly g is continuous. Moreover $h = f \circ g$. Hence, by proposition 3.1.12, h is continuous. Similarly one proves the continuity of $\lambda x'$. $f(x_0, x')$ for $x_0 \in D$.

(
$$\Leftarrow$$
) Let $X \subseteq D \times D'$ be directed. Then

$$f(\sup X) = f(\sup (X)_0, \sup (X)_1)$$

$$= \sup_{x \in (X)_0} f(x, \sup (X)_1)$$

$$= \sup_{x \in (X)_0} \sup_{x' \in (X)_1} f(x, x')$$

$$= \sup_{(x, x') \in X} f(x, x').$$

The last equality holds because X is directed. Therefore f is continuous.

3.2. Towards a 2-model

In order to turn a complete lattice into a model of the λ -calculus, we need the operations "application" and "abstraction".

32.1. PROPOSITION. (Continuity of application).

Define Ap: $[D + D'] \times D + D'$ by Ap(f,x) = f(x).

Then Ap is continuous.

PROOF. Apply lemma 3.1.18. λx . Ap(f,x) = λx . f(x) = f is continuous since $f \in [D \to D^{\dagger}]$. Let $H = \lambda f$. Ap(f,x₀) = λf . f(x₀). Then for f_i , $i \in I$, directed $H(\sup_i f_i) = (\sup_i f_i)(x_0)$ $= \sup_i (f_i(x_0)), \text{ by proposition 3.1.15 (ii),}$ $= \sup_i H(f_i). \square$

3.2.2.PROPOSITION. (Continuity of abstraction). Let $f \in [D \times D^1 + D^1]$. Then Ay. $f(x,y) \in [D' \rightarrow D'']$ and depends continuously on x.

7.4

PROOF. By lemma 3.1.18 it follows that My. $f(x,y) \in [D' \to D'']$. Moreover let $X \subset D$ be directed. Then

Ay.
$$f(\sup X,y) = Ay$$
. $\sup_{X} f(x,y)$

$$= \sup_{X} Ay$$
. $f(x,y)$
by continuity of f and the remark 3.1.16.

It now follows that the category of complete lattices with continuous maps forms a cartesian closed category. We will not use this terminology however.

3.2.3. DEFINITION. (i) D is a retract of D' (notation D < D') if there are continuous maps F: D' \rightarrow D, G: D \rightarrow D' such that F \circ G = id_D. (ii) D is called reflexive if [D → D]< D.

REMARK. If D < D' via the maps F,G, then F is surjective and G injective. We may identify D with its image $G(D) \subseteq D^t$. Then F "retracts" the larger space D' to the subspace D.

Now it will be shown how a reflexive D can be turned into a model of the \u03b4-calculus.

3.2.4. DEFINITION. Let D be reflexive via F, G.

(i) F retracts D to its function space $[D + D] \subseteq D$. So for $x \in D$ one has $F(x) \in [D + D]$. In this way elements of D become functions on D and one may write

$$x_{p}y = F(x)(y)(\epsilon D).$$

(ii) Conversely, every continuous function on D becomes via G an element of D. Now one may write

$$\lambda^{G}$$
x, f(x) = G(f)(ϵ D),

for f continuous.

A valuation in D is a map p: variables - D.

3.2.5. DEFINITION. Let D be reflexive via F.G.

(i) Given a valuation ρ in D and M ϵ A the interpretation of M in D under the valuation ρ (notation $[M]_0^D$) is defined as follows.

М	[M] ^D
x	ρ(x)
PQ	[P]D.F[Q]D
λx.P	λ^{G}_{d} . $[P]_{\rho(x:=d)}^{D}$

where c (x:=d) is the valuation c' with

$$\rho'(y) = \rho(y) \text{ if } y \notin x$$

= d if $y \in x$.

This definition is correct: by induction on P one can show the continuity of Ad. [P] p(x:=d)

(ii) M = N is true in D (notation $D \models M=N$) if for all p one has

 $[M]_{\rho}^{D} = [N]_{\rho}^{D}$.

Intuitively $[M]_{\rho}^{D}$ is M interpreted in D where each λ -calculus application . is interpreted as . F and each λ as λ^{G} . E.g.

$$[\lambda x.xy]_{\rho}^{D} = \lambda^{G} d.d \rho(y)$$
$$= \lambda^{G} x.x \rho(y).$$

Informal notation. If a reflexive D is given and $\rho(y) = d$, then we will loosely write λx .xd to denote the more formal $\{\lambda x$.xy $\}_{\rho}^{D}$.

Clearly $[M]_{0}^{D}$ depends only on the values of ρ on FV (M). That is

3.2.7. THEOREM. If D is reflexive, then D is a sound model for the λ -calculus, i.e.

$$\lambda \vdash M = N \Rightarrow D \models M = N.$$

<u>PROOF.</u> Induction on the proof of M = N. The only two interesting cases are the axioms (β) and the rule (ξ).

As to (β). This was the scheme ($\lambda x.M$) N = M[x:=N].

Now

Sublemma. $[M[x:=N]]_{\rho} = [M]_{\rho(x:=[N]_{\rho})}$

Subproof. Induction on the structure of M.

Write
$$P' \equiv P[x:=N]$$
, $\rho' = \rho(x:=[N]_{0})$.

М	[M*] _p	[M] _{p*}	comment
x	In P _o	In P _o	ок
у	ρ(y)	'ρ(y)	0К
PQ	(P*) _p . _F [Q*] _p	[P] _{p*} · _F [Q] _{p*}	IH
λу.Р	λ ^G d. [P*] _{ρ(y:=d)}	λ ^G d. [P] _{p*} (y:=d)	$(\rho(y:=d))^* = \rho^*(y:=d)$

🛚 sub

By the sublemma the proof of the soundness of (β) is complete.

As to (ξ). This was M = N $\Rightarrow \lambda_{X}$.M = λ_{X} .M.

We have to show

$$D \models M = N \qquad \Rightarrow \qquad D \models \lambda x.M = \lambda x.M.$$
Now
$$D \models M = N$$

$$\Rightarrow [M]_{\rho} = [N]_{\rho} \quad \text{for all } \rho$$

$$\Rightarrow [M]_{\rho}(x:=d) = [N]_{\rho}(x:=d) \quad \text{for all } \rho,d$$

$$\Rightarrow \lambda d. [M]_{\rho}(x:=d) = \lambda d. [N]_{\rho}(x:=d) \quad \text{for all } \rho$$

$$\Rightarrow \lambda^{G}d. [M]_{\rho}(x:=d) = \lambda^{G}d. [N]_{\rho}(x:=d) \quad \text{for all } \rho$$

$$\Rightarrow [\lambda x.M]_{\rho} = [\lambda x.N]_{\rho} \quad \text{for all } \rho$$

 \Rightarrow D \models λx . M = λx . N.

3.3. A concrete model: DA

Now we will give an example of a reflexive complete lattice called D_A . The method is due to ENGELER [1981] and is a code free variant of the graph model $P\omega$ due to PLOTKIN [1972] and SCOTT [1973].

3.3.1. DEFINITION. (i) Let A be a set. Define

$$B_0 = A$$
,
 $B_{n+1} = B_n \cup \{(\beta,b)\} b \in B_n \text{ and } \beta \subseteq B_n, \beta \text{ finite}\},$
 $B = \bigcup_{n=1}^{\infty} B_n$.

 $D_A = P(B) = \{x \mid x \subseteq B\}$, considered as complete lattice under inclusion (\subseteq). The set B is just the closure of A under the operation of forming ordered pairs (β ,b). It is assumed that A consists of urelements, that is, does not contain pairs (β ,b) ϵ B.

(ii) Define F:
$$D_A \rightarrow [D_A \rightarrow D_A]$$
, G: $[D_A \rightarrow D_A] \rightarrow D_A$
by

$$F(x)(y) = \{b \mid \exists \beta \subseteq y (\beta,b) \in x\},$$

$$G(f) = \{(\beta,b) \mid b \in f(\beta)\}.$$

 $\underline{3.3.2.\,\text{THEOREM}}$. D_A is reflexive via the maps F,G.

PROOF. F and G are clearly continuous (use that the β 's are finite). Moreover for continuous f

$$F \circ G(f)(y) = F(\{\beta,b\} \mid b \in f(\beta)\})(y)$$

$$= \{b \mid \exists \beta \subseteq y \mid b \in f(\beta)\}\}$$

$$= U_{\beta \subseteq y} \quad f(\beta)$$

$$= f(y)$$

since sup = u in D_A and y = u $\underline{\beta = y}$ β is a directed supremum. Therefore $F \circ G(f) = f$

and hence
$$F \circ G = id_{D_A \to D_A}$$
.

Now a semantic proof of the consistency of the λ -calculus can be given.

3.3.3. COROLLARY. The λ -calculus is consistent, i.e. λ \forall true = false.

<u>PROOF.</u> Otherwise $\lambda \vdash x = y$; but then $D_A \models x = y$. This is not so, take $\rho(x) \neq \rho(y)$, in a D_A with $A \neq \emptyset$. \square

The following definition and lemma are useful for the determination of [M] in $D_{\underline{A}}$, and is taken from LONGO [1983].

3.3.4. DEFINITION. (i) For $b \in B$ the norm |b| is defined inductively.

$$|\mathbf{b}| = 1$$
 if $\mathbf{b} \in A$,
 $|(\beta, \mathbf{b})| = \max \{|\mathbf{c}| | |\mathbf{c} \in \beta| + |\mathbf{b}| + 1.$

(ii) For $x \in D_{A}$ define $x_{n} = \{b \in x \mid |b| \le n\}$. Write $|\beta| = \max \{|c| \mid c \in \beta\}$. 33.5, LEMMA. For $x, y \in D_A$ one has

(i) $(x_n)_m = x_{\min(n,m)}$;

(ii) $x = u_n x_n$;

(iii) $x_0 = \emptyset$;

(iv) $x_{n+1} \ y \in (xy_n)_n$.

PROOF. (i), (ii), (iii) trivial.

(iv) $x_{n+1} \ y = \{b \mid \exists \beta \subseteq y \ (\beta,b) \in x_{n+1}\}$ $\subseteq \{b \mid \exists \beta \subseteq y \ (\beta,b) \in x \ \text{and} \ |\beta| \le n, \ |b| \le n\}$ $= \{b \mid \exists \beta \subseteq y_n \ (\beta,b) \in x\}_n$ $= (xy_n)_n$.

3.4. References

Engeler, E.

[1981] Algebras and combinators, <u>Algebra Universalis</u> 13 (3), pp. 389 - 392.

Longo, G.

[1983] Set-theoretical models of A-calculus: theories, expansions, isomorphisms, Ann. Pure Appl. Logic 24, pp. 153-188.

Plotkin, G.D.

[1972] A set-theoretical definition of application, School of Artificial Intelligence, Memo MIP-R-95, University of Edinburgh.

Scott, D.S.

[1973] Models for various type-free calculi, in: Suppes et al. [1973].
pp. 157-187.

Suppes, P. et al. (= Suppes, P; Henkin, L.; Joja, A. and Moisil, Gr. C. (eds.))
[1973] Logic, methodology and philosophy of science IV, Studies
in Logic 74 (North-Holland, Amsterdam).

CHAPTER 4

THEORY OF THE MODEL DA

4.1. Böhm trees

For each $M \in \Lambda$ we will define a certain tree BT(M), the so-called Böhm tree of M. Böhm trees will play an important role in the analysis of the model DA.

4.1.1. Lemma. Each $M \in \Lambda$ is either of the form

(1) $M = \lambda x_1 ... x_n . y P_1 ... P_m , n \ge 0, m \ge 0;$ or

(2) $M = \lambda x_1 \dots x_n. (\lambda y. P_0) P_1 \dots P_m, n \ge 0, m \ge 1.$

 $\frac{Proof}{n=m=0}$. If M is a variable, then M is of the form (1) with

If M is an application term, then $M = P_0 P_1 \cdots P_m$ with P_0 not an application term. Hence M is of the form (1) or (2) depending on whether P_0 is a variable or an abstraction term (and n=0).

If M is an abstraction term, then a similar argument shows that M is of the right form. \boxtimes

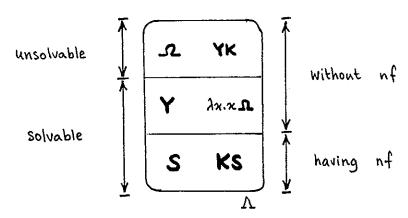
- 4.1.2. <u>Definition</u>. (i) A term M is a <u>head normal form</u> (hnf) if M is of the form (1) in lemma 4.1.1. In that case y is called the <u>head variable</u> of M.
 - (ii) M has a hnf if M=, N with N a hnf.
- (iii) M is solvable if M has a hnf; otherwise M is unsolvable.
- (iv) If M is of the form (2) in lemma 4.1.1., then (λy.Po)Pq is called the head redex of M.
- 4.1.3. <u>Examples</u>. (i) S = 1xy2.x2(y2) is a hnf;
- (ii) $Y = \lambda f$. wf wf with wf = $\lambda x \cdot f(\alpha x)$ is not a hnf, but Y is solvable, since

 $Y = \lambda f. f(\omega_f \omega_f).$

Note that Y has no nf.

(iii) $\Omega = (\lambda x. xx)(\lambda x. xx)$ has no hnf.

4.1.4. Remark. Λ can be divided into three parts, indicated by the following figure. In each part some characteristic terms are given.



4.1.5. <u>Proposition</u>. Identification of all λ -terms without a nf leads to an inconsistent theory.

Proof. Note that

λx.x true Ω = λx.x false Ω + true = false. \

4.1.6. <u>Fact</u>. All unsolvable terms can be identified such that the resulting theory is consistent. For example,

$$\lambda + (\Omega = (\lambda x. \pi x)(\lambda x. \pi x))$$

is a consistent theory.

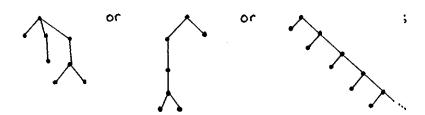
4.1.7. Lemma. If M = M' and

M has hnf $M_1 = \lambda x_1 \dots x_n \cdot y P_1' \dots P_m'$,

M' has hnf $M_1' \equiv \lambda x_1 \dots x_{n'} \cdot y' P_1 \dots P_{m'}$, then n=n', $y \equiv y'$, m=m' and $P_1 =_{\mathcal{B}} P_1'$, ..., $P_m =_{\mathcal{B}} P_m'$.

<u>Proof.</u> By the Church-Rosser theorem M_1 and M_1' have a common reduct L. But then $L \equiv \lambda x_1 \dots x_{n''} \cdot y'' P_1'' \dots P_{m''}''$ with n = n'' = n', $y \equiv y'' \equiv y'$, m = m'' = m' and $P_1 = P_1'' = P_1'' = P_1'' \dots \boxtimes$

4.1.8. <u>Definition</u>. (i) A tree is something like



that is, a partially ordered set with

- (1) there is a root (least element);
- (2) each node (point) has finitely many direct successors;
- (3) the set of predecessors of a node is finite and linearly ordered.

Note that our trees grow upside-down!

(ii) A <u>labelled tree</u> is a tree with symbols at some of its nodes.

4.1.g. <u>Definition</u>. Let MEA. The <u>Böhm tree</u> of M (notation BT(M)) is a labelled tree defined as follows.

 $BT(M) = \lambda x_1 ... x_n, y$ BT(M1) BT(Mm) M has as nnt $\lambda_1 \cdots \lambda_n y M_1 \cdots M_m$;

if M is solvable, = . (just a root, no lable) if M is unsolvable.

4.1.10. <u>Examples</u>. (i) BT(**S**) =

(ii)
$$BT(\Omega) = .$$
(iii) $BT(Y) = \lambda f. f$

f

This because $Y = \lambda f$. wf wf $(\omega_f = \lambda x. f(xx))$. But $\omega_f \omega_f = f(\omega_f \omega_f)$, So

$$BT(\mathbf{Y}) = \lambda f.f - \lambda f.f = \lambda f.f$$

$$BT(\omega_f \omega_f) \qquad f$$

$$f$$

$$f$$

4.1.11. Remark. Note that definition 4.1.9 is not an inductive definition of BT(M). Indeed, $M_1 = M_M =$

x-5-x-5-

4.1.12. <u>Proposition</u>. BT(M) is well defined and if $M -_B N$ then BT(M) = BT(N).

<u>Proof.</u> What is meant is that BT(M) is independent of the choice of head normal forms. This and the second property follow from lemma 4.1.7. \square

4.2. The approximation theorem

In this section we will show that for all $M, N \in \Lambda$ $BT(M) = BT(N) \Rightarrow D_A \models M=N.$ The main tool to show this is the so called approximation theorem, originally due to Hyland for the model Pw. It tells us how the value $[M]^{DA}$ can be approximated from below by parts of the Böhm tree of M. We need some extra notation. Since the only model that is considered is D_A , we write [-1] for $[]^{DA}$.

4.2.1. <u>Definition</u>. (i) Λ I is an extension of the set Λ by adding a constant L to the formation rules:

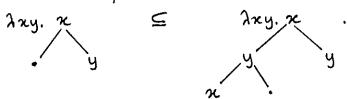
 $\bot \in \Lambda \bot$ $\varkappa \in Var \Rightarrow \varkappa \in \Lambda \bot$ $M,N \in \Lambda \bot \Rightarrow (MN) \in \Lambda \bot$. $M \in \Lambda \bot$, $\varkappa \in Var \Rightarrow (\lambda \varkappa.M) \in \Lambda \bot$.

- (ii) The term \bot serves as a constant for ϕ : we extend $\llbracket \rrbracket$ and set $\llbracket \bot \rrbracket = \phi$.
- (iii) Reduction for terms in $\Lambda \perp$ is ordinary β -reduction extended with the contraction rules

$$\lambda x. \perp \rightarrow \perp$$
,
 $\perp M \rightarrow \perp$.

The resulting reduction relation is called β_{\perp} -reduction (notation $\rightarrow_{\beta_{\perp}}$, $\rightarrow_{\beta_{\perp}}$ as usual).

- (iv) A term $P \in \Lambda L$ is in βL -normal form if P does not have a subexpression of the form $(\lambda x.R)S$, $\lambda x.L$ or LQ. P has a βL -nf if P-> βL -P' for some P' in βL -nf.
- (v) Böhm trees of ΛL -terms are defined by letting BT(L) = .
- 4.2.2. Remarks. (i) Note that since $D_A = \lambda x. \phi = \phi$ and $D_A = \phi y = \phi$, $\beta 1$ -reduction preserves the value of a $\lambda 1$ -term in D_A .
- (ii) If P has a β -nf, then P has also a β 1-nf. This is because replacements of the form $\lambda x. \bot \to \bot$ and $\bot M \to \bot$ decrease the length of a term and do not create new β -redexes.
- 4.2.3. <u>Definition</u>. (i) Let A and B be Böhm trees of some terms. Then A is <u>included in</u> B (notation A S B) if A results from B by cutting of some subtrees, leaving an empty node. For example,



- (ii) Let P, Q \in A.L. P <u>approximates</u> Q (notation PEQ) if BT(P) \subseteq BT(Q).
- (iii) Let $P \in \Lambda I$, and $M \in \Lambda(I)$. Pis an approximate normal form (anf) of M if Pis a βI -nf and $P \subseteq M$.

4.2.4. Example. Consider the fixed point combinator $Y = \lambda f. (\lambda \kappa. f(\kappa \kappa)) (\lambda \kappa. f(\kappa \kappa)).$

Then $\lambda f. f \perp \subseteq Y$ (see example 4.1.10 (iii)), so $\lambda f. f \perp \in \mathcal{O}(Y)$. In fact

$$\mathcal{O}(Y) = \{\bot, \lambda f.f\bot, \lambda f.f^2\bot, \dots \}.$$

We now state the

4.2.5. Approximation theorem. For $M \in \Lambda(L)$ one has $[M]_p = \sup \{ [P]_p \mid P \in A(M) \}$.

The proof is postponed until 4.2.7.

4.2.6. Corollary. For all M, N $\in \Lambda$ $BT(M) = BT(N) \implies D_A \models M = N$.

<u>Proof.</u> By the approximation theorem, $BT(M) = BT(N) \implies cA(M) = cA(N)$ $\implies [M]_p = [N]_p,$

for all valuations p. \

Longo [1983] has shown also the converse of corollary 4.2.6, so one has in fact

 $BT(M) = BT(N) \iff D_A \models M=N,$ but this requires more work.

We now establish the proof of the approximation theorem 4.2.5. This occupies 4.2.7 - 4.2.15.

4.2.7. <u>Lemma</u>. Let $P, M \in \Lambda I$. Then $P \in \mathcal{A}(M) \implies [P]_P \subseteq [M]_P.$

<u>Proof.</u> Note that M results (up to =p) from P by replacing some L's by other terms. Now the result follows by monotonicity of the " λ -calculus operations' in DA. Example. Let $M = p \lambda x \cdot x \cdot M$. Then $\lambda x \cdot x \cdot L \in \mathcal{A}(M)$ and

$[\lambda_{x,x}] \subseteq [\lambda_{x,x}M]. \boxtimes$

The following "indexed 1-calculus" was introduced by Hyland and Wadsworth in order to prove the approximation theorem.

4.2.8. <u>Definition</u>. (i) The set of <u>indexed λI -terms</u> (notation ΛL^{N}) is defined by adding to the formation rules of ΛL $M \in \Lambda L^{N}, \ n \in \mathbb{N} \implies M^{N} \in \Lambda L^{N}.$

(ii) [] is extended to ΛL^{N} by adding $[M^{n}]_{p} = ([M]_{p})_{n}$.

(For a definition of (.), see definition 3.3.4.)

- (iii) If $M \in \Lambda L^M$, then $M^* \in \Lambda L$ is obtained from M by leaving out all indices.
- (iv) Let $M \in \Lambda L^M$. M is <u>completely indexed</u> if every subterm N of M* has an index in M (i.e. occurs as part of Nⁿ in M).

4.2.g. Example. $(\lambda x. (x^2 x^3)^4)^3 \in \Lambda 1^N$ is completely indexed, but $(\lambda x. x^2 x^3)$ and $((\lambda x. x^2 x)^4)^5$ are not.

4.2.10. Definition. Indexed βL -reduction (notation \rightarrow ;, \rightarrow); is defined by the following contraction rules.

$$(\lambda x. M)^{\circ} N \longrightarrow_{i} \bot;$$

$$(\lambda x. M)^{n+1} N \longrightarrow_{i} (M[x_{i}=N^{n}])^{n};$$

$$\bot^{n} \longrightarrow_{i} \bot;$$

$$\bot M \longrightarrow_{i} \bot;$$

$$\lambda x. \bot \longrightarrow_{i} \bot;$$

$$(M^{n})^{m} \longrightarrow_{i} M^{min(n,m)}.$$

4.2.11. Lemma. Let M, N e AIN and M->; N. Then

- (i) N* E M*.
- (ii) [M]_p ⊆ [N]_p.(Note the difference in order.)

<u>Proof.</u> (i) Induction. The approximation appears because of the contractions $(\lambda x.M)^{\circ} N \rightarrow_{i} L$.

(ii) By lemma 3.3.5 it follows that \rightarrow_i preserves or increases the value of a term in D_A . \boxtimes

4.2.12. Lemma. Each completely indexed term $M \in \Lambda \perp^N$ \rightarrow : - reduces to some $N \in \Lambda \perp^N$ such that N^* is a $\beta \perp - nf$.

Proof. It is assumed that M is "minimally indexed", i.e. M does not contain subterms of the form $(P^m)^n$. (This can be achieved by contractions $(P^m)^n \to P^{\min(m,n)}$.) M has a p-redex if $(\lambda x.R)^pS$ occurs in M. The order of M is the maximal p such that M has a p-redex; if M only contains redexes of the form L^n , L^n , L^n , L^n , the order of M is O. Now by induction on the order p of M the term N will be constructed.

Case p=0. Contractions of the form

 $(\lambda x.R)^{\circ}S \rightarrow L,$

 $T_{\nu} \rightarrow T$

 $\perp M \rightarrow \perp$

 $\lambda x. \perp \rightarrow \perp$

all decrease the length of a term. Hence after finitely many steps N can be found.

Case p=n+1. Replacing the rightmost p-redex $(\lambda x.R)^{n+1}S$ by $(R[x:=S^n])^n$ and then replacing terms $(S^n)^m$ by $S^{min(n,m)}$ results in a term with one less occurrence of a p-redex. (Typical example (some indices are left out):

 $(\lambda ab, baa)^{n+1} ((\lambda x, x^{n+1}R)^{n+1} (\lambda z, z)^{n+2}) \rightarrow i$ $(\lambda ab, baa)^{n+1} ((\lambda z, z)^{n})^{n+1}R) \rightarrow i$

 $(\lambda ab. baa)^{n+1} ((\lambda + \cdot + \cdot)^n R).$

After a finite number of such steps the term is reduced to a minimally indexed one of order n. Now apply the induction hypothesis. \boxtimes

4.2.13. Lemma. Let $M \in \Lambda \perp^N$ be completely indexed. Then there exists an $N \in \Lambda \perp^N$ such that

- (1) N* ∈ A (M*);
- (2) $[M]_{p} \subseteq [N]_{p}$.

<u>Proof.</u> By lemmas 4.2.12 and 4.2.11.

4.2.14. <u>Definition</u>. Let $M \in \Lambda L$. An <u>indexing</u> for M is a map I that assigns an element of IN to each subterm of M. M^I is the resulting completely indexed term.

4.2.15. Lemma. Let $M \in \Lambda I$. Then $[M]_{p} = \sup \{ [M^{I}]_{p} \mid I \text{ indexing for } M \}.$

<u>Proof.</u> Induction on the structure of M, using $x = \sup_{n} x_n$. \boxtimes Now we can give the

<u>Proof of the approximation theorem</u>. Let $M \in \Lambda(L)$. In D_A we have

 $M = \sup \{M^{T} \mid I \text{ indexing for } M\}$, by lemma 4.2.15 $\subseteq \sup \{N \mid N^* \in \mathcal{O}(M)\}$, by lemma 4.2.13 $\subseteq \sup \{N^* \mid N^* \in \mathcal{O}(M)\}$, since clearly $N \subseteq N^*$ $= \sup \{N \mid N \in \mathcal{O}(M)\}$ $\subseteq M$, by lemma 4.2.7. \boxtimes

4.3. Reference

Longo, G.

[1983] Set-theoretical models of 2-calculus: theories, expansions, isomorphisms, Ann. Pure Appl. Logic 24, pp. 153-188.