CHAPTER 3
DENOTATIONAL SEMANTICS

Semantics of lambda calculus: an introduction

In natural languages, one can explain the meaning of a particular word in two
ways. One can translate the word into another language (of which the meaning
is already known); the second way is to describe the use or behaviour of the word
in the language itself.

Lambda calculus can be considered as a (formal) language. A A-term (ini-
tially just a sequence of symbols) can be given a meaning in the abovementioned
two ways. This leads to the notions of denotational and operational semantics
respectively.

Denotational semantics

In the denotational approach, A-terms are translated into another structure (usu-
ally some mathematical domain).

This semantics is usually given in a modular (or ‘syntax-driven’) way by equipping
D with a binary application operation - and defining e.g.

[MN} =[M] - [N],
or, in a functional notation,
[MN] = [MI(IN])

since M is considered as a function and N as its argument. Because in A-calculus
the terms serve both as arguments and as functions applied to these arguments,
one would like a domain D such that D— D (the space of functions from D to D)
is isomorphic to . For cardinality reasons this is impossible. The mathematician
D.S. Scott solved this problem by restricting D— D to the set [D— D] of so-called
continuous functions on D. He worked with complete lattices and constructed a
D such that [D—D] = D. It turned out that for a model of the A-calculus it is
sufficient to find a D such that [D—D] is a so-called retract of D.
The interpretation [-] is sound if, roughly spoken,

AP M =N = [M]}=[N],

s0 terms that are equal modulo A-convertibility are given the same value in the
model, This leads to the notion of A-algebra.




This illustrates two motives for studying denotational semantics: firstly, by
the translation one identifies certain distinct syntactical objects, e.g. KI€2 and Il.
Furthermore, by examining equality of terms in a given model {D, [-]) one obtains
insight in possible extra identifications on the syntactical level. This has lead,
e.g., to a good representation of the notion ‘undefined’ (known from recursion
theory) in the lambda calculus.

Operational semantics

Operational semantics of A-calculus is concerned with the reduction behaviour of
A-terms. This relates a A-term M to the set of all possible 1-step reducts, and
so on. Rather than studying the full reduction graph Gg{M} one often considers
one particular reduction path. Such a path is usually obtained from a reduction
strategy, choosing in a term one or more redexes to be reduced.

This approach is common in the description of semantics of functional pro-
gramming languages: the result of a functional program depends on the choice of
a particular evaluation order. Therefore the often mentioned correspondence be-

tween functional programming languages and A-calculus is preferably expressed
by

functional programming language ~ A-calculus + reduction strategy.

34, Complete lakkices

3.1 Definition. Let D be a <et, ond let & < DxD be

an ordering. (D, €) s a pakiel.ordecing E for all

%Yy, 2 €D one has
xE N (e is reflexive);
Ty & yea) = w2 (& is kransitive);
(_’x‘.':'-.j Fyex) = x=y (& is an’cngmme’c.ric).

3.0.2. Definition. lek (D, 2) be a parkial oOrdering, ae D,
anda X €D,
() a % on wuppec bound of X (notakion X T a) if
VeeX xnEa,
o S a lower bound oF X  (notakion a € X) 1{3
VeeX atx,

() o s the supremum of X (nokakion a=swupX, as LX)

(1) XEa ("a 3 an upper bound of XM
(2) -Y—Qr oMl beD '\c X Ch, then atc b "a 16 the least
upper hound 0(- X "). .

B
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Nokte that this definition implies that suprema are

Unique.

312, DQ,:E\n‘\*cion. let D be a sek, and © € ?Q(Dxb).
(D,e) is o complete lakkice if

() (D,8) s & parkial ordering;

(2) for all X €D there is aeD such that a= supX.

2.4 'Prbgos'\kion. Bach complete latkice (D,€) has a
largest element  (kop, T) and a least element (botkom, 1),

Prool. Take
T = sup D
1 = sup ¢ (1), "

345, Examples. (1) lek A be a sek. Then (R(A), €
i a Compleke lattice with for X € R (A)

Sup X = S(G-)XS'

The -Fol\ow'\r\g preture  shows (’p (11,2,3%), €).
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() (Totlg, €) s & complete laktice.
() ({o1)g, €) 1 not a complete \attiee. Foc
ex,amp\e, the setb
Ine fotlg | 2% <1}
has no supremum in [0,13&,

31,6, Definikion, et (D,E) be a partial ordering, aeD,
and X €D, a s the mfimum of X (notakion a=WnfX,

a = HX) ‘l‘£
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(1) a X C "a 15 a lower bound o? X ") ;
(2) -f-br all beD: bEX = bta ("a s the
geatest lower bound of X "),

3.13. Proposition. let (D, C) be a compleke lakbice. Then
-FOf a\l X €D the infimum inf K exists.

’Pf‘og[- One easily verifies that
mf X = sup {yedlyeX) K

Below (D, 2), O, ), (D E”"), ~ range over
Complete lakkices,

2.4, 8. Nokakion. Tor x4 e D we wnte
x 1y = U [u,b‘]

ond

iy = Tyl

3.9, ’De{[miiim. Lek X €D, X is directed IF
YrxeX VYyeX JareX {[xcz §yerl,

2.1.10, Definition. Let £1 D= D’ be a funckion.

----------------------

xcy = fx) € fy).
(i) -p 'S Continuous W0 for all direcked X €D one has
£ Csup XY = sup £(X) (= sup L P(x) | xeX3),

ARLE ?("OEOS‘\'C‘\Dn. Let -?'\ D — D be a -?unci:ton. Then
-@ 1$  conkinuous =2 -F S monokonic,
<

’Proog. (=) S\&PPOSQ -? s continuous, Note that for x,ueD

with % &y one has

HoLd ‘j = 8.
There {ore

Pix) b $Cy) = £(y).
Hence f(x) &' fly) so [ is wonotonic,
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(&) A counterexample 13 suggested by the following
prcture.

o - >

=)

L
D Ny

C\earla —p ¢ monokonmic, buk
flswplong, ) = Hw) = T4 L = sup {({o42,-1). B

3412, 'Prngositicm, Lek £+ D=1} g: D' — D". L £ and 9
arte  monotonic  (continuous), then ﬂ°{j"D—->D" is monokonic

(Conkir\uouks) .

proog. S’craiahk@orwar@k; note that dLoc directed XeD, -G(X)
IS also direcked by wonotontcity of f1 R

2443, ’DQEK“‘\HOV\. Lee X e DxD. Then
(X)o = {xed | In'ed (,x)e X,
(s = [wen]3xed (nx) € X},

344, Definition, (1) Given D, DY, lek Dx D' be the
cacthesian product ?a\rha\\\j ordered by
(x,%') € (y,y°) ief xCy & %L’y
) Lek D, D’ be given. be{:‘me
[D-—?D’] = {-F DD’ -F s COhE‘muLou.S}.
This sek can be ordered pointuise:

Pecg ff VxeeD §(x) T qx).

3445, ’Progos‘\‘c{on. (i) DxD’ ¢ a complete lakkice -For X € DxD’

one has

LX = (L0, L0,
Gi) Let f{il: be a colleckion of continuous maps i DD

...u‘}-.




Define {:D—=D" by f)= swp (fi(x)). Thea £ is
ontinuous and . [D—D’'] one has -F = Sup fi. Therefore
[D——?D'] is a Complete \akkice.

Peoof. (1) Easy.
() Let X €D be directed. Then

[ (sup X) = sup  fi (sup X)
= Sl:\.P :::?( -F{' (=), Lb c.or\‘c’muifﬂ‘o-r -&

= 5 Sy L Se2 prackicu
Sup ?PJ;() (see practicum)

= swp f(x),

HEX

Thecefore £ 35 continuous.  Moreover  {fi}; & f, by definition
of ©. Suppese {{i}: e 9, then Vix fi(x) e g(x) 3o
Vi  sup fi(x) & g(x), Hence fc 9. ®

3.146. Remark. I Ax. denotes wmeta - A- abstrackion, then
we have as a conseguence o\t ProFos\Hon 2445 (i)

3\5&? N {.{(‘X) = Ax. S‘S‘f’ (-?;(’K)),

i.e. Sup Commutes with W,

31173, Theorem. Lek -?e (p— 0l Then § has a least
Pixed poink  defined by
o = Fie(f) = sup PU(L).

Peoof. Note that the set [ f"(L) | ne™NY is directed:
1280 so by monotonicity  fCL) € £2(L), ekceterm.
Therefore L & fCL) & £*CL) & . Hence
fla) = swp £(£M(L))
- S:‘g _F LE J (..L)

= O,
Suppose % s anokher fixedpoint of {. Thew P(x) = x and
L S% so \:3 ronokonicity -F“(_L) =4 .‘;“Ck) = X,
Therefore atx., B
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2018, Lemma. Llet £: DxD' — D"  Then £ is continuous
WE § is continuous in each of its vaciables seperately
Gee. Ax, £, %) and Ax' § (., %) are continuous for
all %, % ). '

Peoof. (=) Let f be continuous, and %’ € D’ Tn
order to show that h = Ax. f(x, %) is continuous, define
9. D— DxD’ \93
q(x) = (2%,%4).
Clearly 9 1is continuous. Moreover  he -?oCA, Hence,
by proposition 23.1.42, h s Conkinuous. S‘\mi\arib one proves
the conbinuity  of N’ L(xe, %) for % €D,
(&) Le{r_ X € DxD’ be direcked. Then
Plsup X) = & (swp (X)., swp OO
= sup £ (%, sup (X)4)

ne (K,

= dup Su 11:‘(“!1"'/)
we (X)o x'€{X)y

= Su (x,%") .
(w,u";ex{z )

The last equality holds because X ¢ direcked. Therefore
-? 15 Conbinuwous, ®

3.2, Towards a A-wmodel

Th order to twin a Cowmplete lakbice ints o wodel of
the A-caleulus, we need the operabions “applicakion”

and abskrackion".

A1 4. PROPOSITION. (Continuity of application).
Define Ap: {ID~+D') x D~ D by

Ap(f,x) = £{x).

Then Ap is continuous.

PROOF. Apply lemma 3048, Ax, Ap(f,x) = M. f{x) = f is continuous since
fe[D>D"]. Let H = Af, Ap(f,xo) = Af. f(xo). Then for fi’ ie 1, directed

H(s?p fi) = (s?p fi)(xO)
i i
= sup(fi(xo)), by proposition 3.VAS(Y,
i
= sup H(f;). 0
i
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3.2.2.PROPOSITION. (Continuity of abstraction). Let f e [DxD' + D"], Then

Ay. £(x,y) € [D' + D"] and depends continuously on x.

PROOF. By lemma 3438 it follows that Ay. f(x,y) ¢« [D'+ D"]. Yoreover
let X.E D be directed. Then
Ay. f(sup X,y) = Ay. sup f{x,y)

¥
= sup Ay. f(x,y)

x
by continuity of f and the remark 2.1.1b. [

It now follows that the category of complete lattices with continuous

maps forms a cartesian closed category, We will not use this terminclogy
however.

32.%. DEFINITION, (i) D is a retract of D' (notation D < D'} if there are

continucus maps F: D' > D, 6 : D+ P' such that F=G = idD.
{(ii) D is called reflexive if [D + DJ< D,

REMARK, If D < D' via the maps F,G, then F is surjective and G injective,
We may identify D with its image G(D) < D', Then F "retracts" the larger
space D' to the subspace D,

Now it will be shown how a reflexive D can be turned into a model of

the A-calculus,

3.2.4, DEFINITION, Let D be reflexive via F,G.

(i) F retracts D to its function space [D + D} c D. So for x ¢ D one has
F{x) ¢ [D » D], In this way elements of D become functions on D and one may

write
x.py = F(x)(y) (e D).

{ii) Conversely, every continuous function on D becomes via G an element of

D, Now one may write
A%, £ = GLE)(eD),
for f comntinuocus.

A valuation in D is a map p: variables = D,

325, DEFINITION, Let D be reflexive via F,G,

(i) Given a valuation p in D and M ¢ A& the interpretation of M in D under

the valuation p (notation EHB?) is defined as follows.

u )

% p{x)

P0 in® - lal)
Ax.P S NCHE i SN
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where ¢ {x:=d) is the valuvation p' with

p'(y) = ply) ify £x
= d if y 2 x,
This definition is correct: by induction on P one can show the contin-

uity of Ad. EPIQ(X:Hd)'

(ii) M = X is true in D (notation D k M=RK) if for all p one has
D = el

Intuitively E}{]'g is M interpreted in D where each A-calculus applica-
tion , is interpreted as and each X as ).G . E.g.

b
A%, xyl
{ xyig

'F
= 38440ty

G
= A7x.% o(y).

Informal notation. If a reflexive D is given and o{y) = d, then we will

loosely write ix,xd to demote the more formal fo.xyEB .
Clearly EMES depends only on the values of p on FV(M) . That is

p PEVQCD) =p' PFV M) = ﬁlﬂ.l: = HHI‘E' , where | denotes function
restriction. In particular for combinators ENEpD does not depend on p and

may be written EM?D. If D is clear trom the context we write E}[Bpor iml.

-2% -




3.2.3. THEOREM. T D is reflexive, then D is a sound model for the \~calculus,
z.€,

P M=N = DE M=N.

PROOF. Induction on the proof of M = N, The only two interesting cases are

the axioms (R) and the rule (g).
As to (B}, This was the scheme {(Ax.M)N=x= M{yx:=N].

Now

£ (ax MynD
p

"

G
8 d.ﬁHPp

(x:=d)) ¢ VY,
= F(G(Ad. E“Fp(x:-d))) (HNBQ)

= e MDD gy (D)

since

FeG = id,

= B em P,y

Ml

s =N F = 0
Sublemma. AQM [x:=N] o o(x:= ﬂNBp)
Subproof. 1Induction on the structure of M,
Write P7 & PLx:=N] , b = plxt= ﬂNEp)-
*
M iu Bn 5}1kp* comment
x D LA oK
y p(y) oy} 0K
* R *
p | PR, (R, ot | om
G * G & *
Av.P r'd, e lp(y:‘d) Ad. uPBD*(y:'d) {p(yi=d)) p (y:=d}

1 sub

By the sublemma the proof of the soundness of (R) is complete,
As to (£}, This was M = N = }x.M = ix.M.

We have to show

Dk M=N w Dk Ax.M = Ax.M.
wa Dl M=*N
- KMBQ = ﬁNBp for all p

- HM]D(X:_d) = uan(xttd) for all p,d

$

Ad. ﬂMEp(x:-d) = hd'ENEp(x:-d) for all o

284, My =%, ) for all p

s

p{x1=d) p(xi=d)
ﬂkx.ﬁlp = [ax.N Dp for all p

=

D F Ax.M = ix, N 0

~22—




33. A concrete model: Dy

Now we will give an example of a reflexive complete lattice called DA'
The method is due to ENGELER [1981] and is a code free variant of the graph

model Pw due to PLOTKIN [1972] and SCOTT [19731.

224 DEFINITION. (i) Let A be a set. Definme

By =4,
Bep =B U {¢a,b)] b « B oand 8<SB , 8 finite},
B= U B,
a on
D, = P(B) = {x] x< B}, considered as complete lattice under in-

clusion (c). The set B is just the closure of A under the operarion of

forming ordered pairs {£,b}. It is assumed that A consists of urelements,
that is, does not contain pairs (£,b) ¢ B.

(ii) Define ¥: D, » {DA -+ DA}. G: {DA -+ DA] + Dy
by
F(x)(y) = {b] 3Bcy (8,D) ¢ x},

G(f) = {(B,b) | b e £(B)).
2.3.2, THEOREM, Dy 18 reflexive via the maps F,G.

PROOF., F and G are clearly continuous {use that the 8's are finite),

Moreover for continuous f

FoG(EY(y) = F({B,b) [ b ¢ £(BI)(¥Y)

]

{b{3Bcy be £8))

Ugey £0B)

£{y)

since sup = v in D, and y = u By B is a directed supremum. Therefore

FeG(f) = £
8

and hence FeG = id .
[DA+DA]

Now 3 semantic proof of the consistency of the x-calculus can be given.

23,3, COROLLARY. The X-caleulus is consistent, i{.e. ) Wirue = false.

PROOF. Otherwise X}k x =y ; but then DA [= x =y, This is not so, take

p(x) # p(y), in a D, with A #¢. 0O

The following definition and lemma are useful for the determination

of M} in D,, and is taken from LONGO [1983].

32.M, DEFINITION, (i} For b ¢ B the norm [bl is defined inductively,

k] =1 W obehA,

| (8,b)} = max {le} lc e BY + [b] + 1,
(ii) For x e D, define x = {b ¢ x| jvls nl.
write [8] = max {|e] [ ¢ eBl.




325, LEMMA. For x,v ¢ D, one hae
i = .
1) (xn)m xmin(n,m} i
(i1} x=ux ;
n'n
(iii) Xg = ¢;
(iv) net Y X (xyn)n'

PROOF, (i), (ii), (iii) trivial,

(v) =,y = {bl3Bcy (8B,b) ¢ an]

in

{b] 38cy(8,b) ¢ xand [8] s, [blen)

i

{(bl3scy B,b)ex)

L}

(), O
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CHAPTER 4
THEORY OF THE MODEL Dy

4.4. Bshm %rees

Tor cach MelN we will define a certain tree BT (M),
the so- called Behm tree of M. Bdhm brees Wil play

an imporkant vole it the analysis of the wmodel  Dp.

441, Lemwma, Each M™Mell g eikher 'DQ the -?orm

(‘\) M = AX\ K Y P,\ - Pn , nzo wm2o0;
Or
(2) Moo= R A, ('Av.?o) P P s n2o, m24,

Proof. Tf Mis a variable, then WM is of the Lorm (1) with
N=wm =0,

T{ M 3¢ an applicakion term, then M= P £ Py with
?o nok an  applicakion term. Hence M 15 of the form (1)
or (2) depending on whether Po 18 a variable or an abstraction
term  (and n=o).

TE M is an abstrackion term, bthen a similar argument
shows that M is of the r“ghk form, R

a2, Definibion. () A teem M is o head normel form (hnf)
M 5ol the form (1) in lemma 4Ad. Ta that case
y is called khe head variable of ™.

(%) M has..a.bmf 0 M= N with Noa haf.

is called the head redex of M.

-----------------------------

443, Examples. (i) S = My n(yx) s a hnf
() ¥ = af.wpop  with wp = Ax. E(xx) s not a hnl,
but Y s solvable, since

Y = 'M\.-F(UO{: Uop).




Note that Y has no 'nP.
(i) L= (Pexx)(Axxx)  has no hnf.

41.4. Remack. [ tan be divided inko three parks, indicated by

the {lo\\owmg -thu.re. In each park  some characteriskic terms
are given.

X ™\ ry
unsolvable JL YK
-}- withowt nf
Y Axx S
Solvable -
S KS I hasing nef
LR — X

445, Proposition. Tdentificakion of all A-teems withouk a nf
leads to an  inconsistent  theory.

Proof. Noke Ethat
Mo brue L = Axx false ST+ brue = false. R

4ib. Fack. AN unsolvoble terms can be idenkified such that
the resulting Etheory is consistent. TFor example,

A+ (L = (Ve (Annnn))

1 o consiskenk H»\eoqj.

4rd Lemma, Tf M = MO oand
M has haf ™M,y
M has Wl M/
thew ne=n’, ysy’, m=m’ and Ty =, P/, -

'A‘Kl... Q(h. 6 ?‘l/ vee P’h‘: s
’Axl b 'X“; , 3’ PA‘ - P

MIJ

w

s Proma P

‘Pnoo_{. 'BU the Church- Rosser kheorem My and M, have o
common reduct L.  Bubk then L= dutan. 4" P Pn:,, wikh

w=n"=n, Y=y =y, mem'=m’ and P "G 7 = P/, . ¥

-2C -~




4.1.8. Delinition. ()Y A tree is So'me‘c‘nir\g like

.........

W

that is, a pactdally ordered sek with
(1) Lthere s a root  (least element)
{2 each node (poink) has 'F‘“"Ee‘”ﬁ many direck gsuccessors ;
(3) ‘the set of predecessors of a node s finite and

\inearh_,) ordered.

Note bthat our treeg grow uPs\de«-down‘.

() A \labelled bree s a kree with symbols ot some of

.............................

its nodes,
a.\.q, 'be.&'\'r\'\\:iov\. Lek MeA. The Bo\'\m‘\:fee OF M (notakion
BT(M)) i a \abelled Lree de{:ino_d as follows,
BT (M) = A%y Ky Y \'Q- M s solvable,
/ \ M has as haf
BT(My) e BT (Mw) Vot K Y My My

= . L:\usk: o rock, ho lable) i(: M is unsolvable.,

aAdo. Examples. () BT(S) = 2Axyr.x

() BT(LL) = .
Gi) BT (YY) = Af

PRPE S - PR —_——

This because ¥ = AL wew, (wg = 2 flxx)). Buk wp Wop = f{wpwe),

T g(Y) - 4z IRV, Y

BT wr)

I
BT (u)_g W)

~ 24~




4iA%, Rewmark. WNote bthat delinition 4.1.9 is nok an inductive
definition of BT(M),  Tndeed, My~ M, may be wmore
complicated than ™M kself, e.gq. if M=(; x(yM)y in
this case BT(M) Ts

e € = R (S — R

gz, Proposition. BT(M) is well defined and if M-(& N
then RT (M) = BTLNX.

Pr‘ogfk- What i¢ meant is thak BT(M) 1s ino\epev\de\r\lc of the
choice of head wnormal forms. This and the second
properky  follow from lewwa 413, ®

4.2. The approximation theorem

T bhis section we wil show that for all M, N e A
RT(M) = RTIN) = Dy B M=N

The main tool o show this s the so called approximakion
theorem , originally due to Hg\and\ for the model Pw.
Tt kells us how the value [MIPA can be approximated
from below by parts of the Bihw tree of M. We need
Some exira notation. Oince the only wodel that is
considered is Dy, we write R-l] for Eyb".

q2.0, Definibion. (1) AL is an extension of the sek A LS
adding a constant L bt the -?Drmcu\:ion rules

L e AL

xe Vac => ne NL

MN e ALl = (MN) e AL

Me Al xeVar = (de.M) e AL,

24~




(1) The term L Serves as a Constant for ¢ @ we
extend [ ] and set (L] = ¢.

(i) Keduction for terms in AL IS ordinacy (Za-red,uc’cibr\
exkended with the conkraction rules

Ax. L — L,

1M — 1.
The resulting reduckion relaktion s called (&J.-reduck\oun
{notakion —raL s Py @S usual).

(w) Atewm Pe Al 15 in B3 -nomal form iE P does
not hove a Sv.\oex\:r—assion 0(1 the I‘:m'wx (?m.R)S, Ax. L
or La. Phas a . (th if P-—»(u P’ dor some
P’ in (S.L- h-t.

(v) Rohm - krees of Al -tewms are defined by letking
RT(L) =

421, Bemarcks. (\) Note that Since 'DA = '}x(j = ¢ and
Dy &= Gy =9, (b~ reduckion  preserves the value of o
ALl-term in Dy

Gy T P has a @-h-?,l then P has also a (&l'—hc.'ﬂ’\'\s
i because replacements of the form Ax.l -1 and
1M — L decrease the length of o term and do nok

Creake New (s—re;dexes,

423, Delintbion. () lek A and B be Rohwm trees of some
teems. Then A T Included in B (nokation A S R) L
A resulks from B by cukking of some subbrees, leaving
an  empty node. For e}t-o.m?\e,
9'13./%\ < ’A'Icg/'x'\ .
. Y Y Y
/
. \°
W BT & RT(Q).
(W) Let P e Nl, and Me AW, Pis an approximate
worma) form (an) of M if Pis a Ri-nf and PEM.
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(wv) AM) = {'Pef\.l.\ Pis an anf of M,

424, Example. Consider the fixed point  Combinator

Y = A0 (B flxn)) (M. £(xx))
Then APEL £ Y (see example 4rdo (i), so AfFL e A(Y).
Th 'Faci:

ACe) = L, AP, AffrL,

We now state the

q4.2.8. A?\?mx\moﬁ:ion theorem.  Tor M:e AN (L) one has
E_MB? = Sup {\IP]}? \ P e A (MY,

The Proo? ;s ?os’c?onao\ until 4.2.9.

4.2.6. Corb\\agg. For all M,N e A

RT(M) = RTIN) =» Dy = M=N,

Pool. By the approximation theorem,
BT (M) = BT(N) = AM) - AW

- E-Mﬂf EN—l]g;

—‘:nr all  valuations P, ®

Longo (1482 has shown also the converse of corollary
4.2.b, so one has tn{fact |
BT (M) = BTVIN) > Dy F M=N,

buk this requires more worlk.

We now eskablish Yhe Proo{: of the approkimation
theorem 4.25. This occupies 4.2.3 - 4.2.15,

4.27. Lewmma., Lek P,M e AL, Then
Pe ch(M) = [Pl € [ml.

?roo{- Note +thak ™M resultg (_\AP bo =p_) 'mex P 53
replacing some 1's by other kerms. Now the result
follows by wonokonicity of the "A-caleulus operakions” in Dy.
Example. Let M =6 MM, Then dxunl € A(M) and
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Eacxl] ¢ faxxMl. R

The following "indexed A-caleulus” was inkroduced by Hyland

ond  Wadsworkh in order o prove the approximation Ltheorem.

42.8. Definivion. () The set of jndexed 2AL-teems (notabion AL™)
s defined by adding to Lthe -{:ormai‘\on rwles of AL
Me ALY ) netl = M" e AN,
(W) [ J s extended %o AN \ob ad.ding
“,M“]g = (EMHP)n' '
(For a o\e,F:n‘\Hov\ of (). see delinition 23.4. )
Go) I M e ALY, then M* e AL is obtained from ™
\:n \eowirxg onk oll indices,
(v) Let M e AL™ M is completely indexed if every
subterm N of ™M* has an index in M (ie. occurs as pork
of N"™ in M),

Y4.2.9, Examg\f’“ (Ax. (actx2))d ¢ AN s completely indexed,
bak (A % %x?)  and  ((Axx*x)*)®  ace not.

4.2.40. ’DQERMHW\. Tndexed L - reduction {(nckakion —>. , —>. )

..................................................

s defined by the {ollowing contrackion rules.

(MM N — 1

(A MM N — (MDu=nm))",
i - L,

1M —, 1

ax. L —, ..L 3

(mmym e

42, Lemma. Lebk MM e AN and  M—» N Then
() N*¥ © M¥*,
@ v, < [ng, .

(Note bthe aifference in order.)

Prool, (1) Trnduckion. The ap?rox‘\ma’c\ov\ appears because of the
Conkractions (’A'X.M)ON -, 1.
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() '83 lemma 335 it follows that —>; preserves oOf

increases the value o(: a term  in bA- X

q.2.142. Lew\w\g. Each cow\\ole\:e\\i indexed teemn Me .[\..LN
. - reduces to some N e ALY such thak N* s a

(S.L—n-F.

Proof. Tt 18 assumed that M is "'minimally indexed”, i.e.

M does nok Contain subterms of the form  (P")", (This
Can be achieved by contractions (PMY" s P inlmimd

M has a p-redex if (Y. RIS occurs in M, The
order of M s the wmaximal p such that ™M has a
p-redex ; if M only contains redexes of the form L%
Im, 2%.1, the order of ™M 15 0, Now by induckion
on the order p of M the tem N will be Constructed.

Cage p=0. Conkrackions of the form
(. RS — 1\,

" — 1,
im — 1,
Ax. L — L

all decrease the length of a term. Hence after Fihlhe\g
many Steps N can be found.

Case P =4t \ee\e\acmg the rightmost p-redex (Axe. RY™M S
by (R [%:=S"1)" and then replacing terms (smy" \05
Sm\n(h.m) resulks in o term with one less occurence o@ o.

p-redex. (T\_.,?ical example (some indices are left onk)
('Aab.\ocxa)““ (A x™RY™ (A22)™) —=

(Aab baa)™ ((Ar)Y™R) —

(Aab. baa)™ ((A2.2)"R). )
After o [inite number of such steps the term is reduced
ko a minimally indexed one o-(f order n. Now apply the

induckion hﬂ po’c\«aSiS. P
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4242, Lemma. Llet Me AL™ be completely indexed. Then
there exists an N e AL™ such that

(1) N* e o4 (M9,

@ [l = OIND, .

Proof. By lemwmas 4212 and 4«21, K

4.2.44, Definition. Lebk ™M e AL, An indexing for M is a
map T that assigns  an element oc N Lo each subterm
o$ M. MT i the reSu\k\'na Com‘:-le’ce\g indexed term.

4215, Lemwma., Lek M e AL, Then
EMX]? = Sup {KMIE? \I index‘mg -Yor M}.

Proof. Twnducktion on Lthe skruckure of ™M, using K = Sup X, [

Now we can give kthe

Proof of the approximation theorem. Lot M e AWM, Ta Dy
We have

™M

Sup iMT T Indexing for MY, by lemma 4.215

S Sup { N \ N* ¢ C)‘L(M)}, \93 lemma 4.2.43

S sup {N*‘ N* e o (M), since clearly NeN*
= Sup ININe A}

c M, by lemma 4.23. B

4.3. Refecence
Longo, G,

[1983] Sek-theoretical wodels of A-calewlus :  kheories, expansions,
icomorphisms,  Ana, Pure  Appl Loaqic 24, pp. 153-188,
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