RADBOUD UNIVERSITY NIJMEGEN

Science Faculty

Exam Semantics and Domain Theory July 2, 2014, 8.30 – 11.30

The maximum number of points per question is given in the margin. (Maximum 100 points in total.) DENS refers to the course notes of Winskell.

NB: you can use all your notes and course material. When dealing with well-known functions and chains that we have seen in the course, you don't have to show (again) that they are monotone/continuous etc.

1. We define the program

$$S :=$$
while $x > 0$ **do** $(y := y + x; x := x - 1)$

Define w_n : State \rightharpoonup State as follows: $w_0(s) = \bot$ and for n > 0,

$$w_n(s) := \begin{cases} s & \text{if } s(x) \le 0\\ s[x \mapsto 0, y \mapsto s(y) + \frac{s(x)(s(x)+1)}{2}] & \text{if } 0 < s(x) < n\\ \bot & \text{if } n \le s(x) \end{cases}$$

- (10) (a) Give the functional F that we need in order to compute the denotational semantics of S and show that $F(w_n) = w_{n+1}$
- (10) (b) Give $w_{\infty} := \bigsqcup_{n \in \mathbb{N}} w_n$ and show that w_{∞} is a fixed-point of F.
- (10) 2. Let f and g be monotone functions from the cpo (D, \sqsubseteq) to (D, \sqsubseteq) . Assume that (i) $f(\bot) = g(\bot)$ and (ii) $f \circ g = g \circ f$.

Prove that f = fix g.

(NB. fix is the well-known Tarksi least-fixed point of f that we have seen in the course.)

3. We define the "parallel implication' function pimp : $\mathbb{B}_{\perp} \times \mathbb{B}_{\perp} \to \mathbb{B}_{\perp}$ as follows (the first argument is in horizontal position, the second argument in vertical position):

pimp	上	tt	ff
	上	上	tt
tt	tt	tt	tt
ff		ff	tt

- (5) (a) Prove that pimp is monotone.
- (5) (b) Prove that pimp is continuous.
- (10) (c) Prove that pimp is not definable in PCF.
- (5) (d) Change one entry in the table of the definition of pimp and show that your adapted function pimp' is definable in PCF.
 - 4. Consider the following PCF terms

 $P_1 \ := \ \operatorname{fix} \left(\operatorname{fn} \ f : \operatorname{\mathbf{nat}} \to \operatorname{\mathbf{nat.fn}} \ x : \operatorname{\mathbf{nat.if}} \ \operatorname{\mathbf{zero}} x \ \operatorname{\mathbf{then}} \ x \ \operatorname{\mathbf{else}} \ f(\operatorname{\mathbf{pred}}(x))\right)$

 $P_2 := \mathbf{fn} \ x : \mathbf{nat}. 0$

 $P_3 := \mathbf{fn} \ x : \mathbf{nat.} \ \mathbf{if} \ \mathbf{zero} \ x \ \mathbf{then} \ x \ \mathbf{else} \ 0$

- (10) (a) Give a term V such that $P_1(\mathbf{succ}(0)) \downarrow_{\mathbf{nat}} V$ and give a derivation of $P_1(\mathbf{succ}(0)) \downarrow_{\mathbf{nat}} V$.
- (10) (b) Give $[P_1]$ and show how you have obtained that answer. (You don't have to give a full computation.)
- (10) (c) For which i, j do we have $[P_i] \neq [P_j]$?
- (8) 5. Suppose that the λ -terms M_2 , M_2 and M_3 satisfy

 $M_1 =_{\beta} \lambda x.x M_2 (\lambda y.x M_1)$

 $M_2 =_{\beta} \lambda x.x M_1 (\lambda y.y M_3)$

 $M_3 =_{\beta} \lambda x.x M_2 (\lambda y.x M_3)$

For which i, j (with $i \neq j$) is it the case that $D_A \models M_i = M_j$? Prove your answer.

(7) 6. Let M and N be λ -terms and assume that M does not have a head-normal form, while N does have a head-normal form.

Show that in the model D_A , $[\lambda x.x M] \subseteq [\lambda x.x N]$.